Relative Motion Control System of Spacecraft for Contactless Space Debris Removal

TitleRelative Motion Control System of Spacecraft for Contactless Space Debris Removal
Publication TypeJournal Article
Year of Publication2018
AuthorsKhoroshylov, SV
Short TitleSci. innov.
DOI10.15407/scine14.04.005
Volume14
Issue4
SectionScientific Basis of Innovation Activity
Pagination5-16
LanguageEnglish
Abstract
Introduction. The research deals with the development of a spacecraft control system for contactless space debris removal using the “ion beam shepherd” technology. Such a system is necessary to provide conditions for effective transfer of decelerating impulse to a space debris object by ion beam in the deorbiting phase.
Problem Statement. The design and analysis of the system has to be carried out taking into account the ion beam effects, a wide range of orbital disturbances, inaccuracies in determining the relative position and implementing the control actions, time-varying and parametric uncertainty, and limitations on the control actions.
Purpose. The purpose is to design a system to control spacecraft relative motion for contactless space debris removal. 
Materials and methods. The mixed sensitivity approach is applied to the system design. The requirements for the controller are specified in the frequency domain using the selected weight functions. The structured singular values methodology is used to analyze the system robustness.
Results. The system robustness and compliance with specified requirements have been confirmed both by a formal criterion and by computer simulation. A rational softening of the requirements for the control accuracy enables reducing significantly the propellant mass needed to maintain the relative position keeping an acceptable rate of space debris removal.
Conclusions. The designed control system provides a compromise between robust stability, performance, and costs of control under the impact of a wide range of disturbances.
Keywordscontrol system, ion beam shepherd, relative motion, robust stability, space debris
References
1. Liou, J.-C., Anilkumar, A. K., Bastida Virgili, B., Hanada, T., Krag, H., Lewis, H., Raj, M. X. J., Rao, M. M., Rossi, A., Sharma, R. K. (2013, April). Stability of the Future Leo Environment – an IADC Comparison Study. Proc. “6th European Conference on Space Debris”. Darmstadt.
2. Bombardelli, C., Peláez, J. (2011). Ion Beam Shepherd for Contactless Space Debris Removal. JGCD, 34(3), 916–920.
3. Hua, T., Kubiak, E., Lin, Y., Kilby, M. (1992, March). Control/Structure Interaction during Space Station Freedom-Orbiter Berthing. The Fifth NASA/DOD Controls-Structures Interaction Technology Conference. Nevada. 
4. Mora, E., Ankersen, F., Serrano, J. (1996, November). MIMO Control for 6DoF Relative Motion. Proceedings of 3’rd ESA International Conference on Spacecraft Guidance, Navigation and Control Systems. Noordwijk.
5. Doyle, J. C., Stein, G. (1981). Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis. IEEE Transactions on Automatic Control, 26(1), 4-16.
6. Zhao, K., Stoustrup, J. (1997). Computation of the Maximal Robust H2 Performance Radius for Uncertain Discrete Time Systems with Nonlinear Parametric Uncertainties. International Journal of Control, 67(1), 33-43.
7. Zhou, K., Khargonekar, P., Stoustrup, J., Niemann, H. (1995). Robust Performance of Systems with Structured Uncertainties in State Space. Automatica, 31(2), 249-255.
8. Khoroshylov, S. (2014). Sintez suboptimalnyih kompensatorov vozmuscheniy v forme nablyudatelya rasshirennogo vektora sostoyaniya. Tehnicheskaya mehanika, 2, 79-92 [in Russian].
9. Alpatov, A., Cichocki, F., Fokov, A., Khoroshylov, S., Merino, M., Zakrzhevskii, A. (2016). Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronautica, 119, 241-251.
10. Alpatov, A., Cichocki, F., Fokov, A., Khoroshylov, S., Merino, M., Zakrzhevskii, A. A. (2015, October). Algorithm for Determination of Force Transmitted by Plume of Ion Thruster to Orbital Object Using Photo Camera. 66th International Astronautical Congress. Jerusalem.
11. Fokov, A., Khoroshylov, S. (2016). Validatsiya uproschennogo metoda rascheta silyi vozdeystviya fakela elektroreaktivnogo dvigatelya na orbitalnyiy ob'ekt. Aviatsionno-kosmicheskaya tehnika i tehnologiya, 2(129), 55–66 [in Russian].
12. Bombardelli, C., Urrutxua, H., Merino, M., Ahedo, E., Pelaez, J. (2012). Relative dynamics and control of an ion beam shepherd satellite. Spaceflight mechanics, 143, 2145-2158.
13. Wie, B. (1998). Space Vehicle Dynamics and Control. Reston: American Institute of Aeronautics and Astronautics.
14. Lawden, D. F. (1963). Optimal Trajectories for Space Navigation. London: Butterworths.
15. Zhou, K., Doyle, J. C., Glover, K. (1996). Robust and Optimal Control. New York: Prentice-Hall.
16. Nesterov, Y. (1997). The Projective Method for Solving Linear Matrix Inequalities. Math. Programming. Series B, 77, 163–190.
17. Khramov, D. A. (2015). Vizualnoe modelirovanie dvizheniya kosmicheskogo apparata. Tehnicheskaya mehanika, 2, 49–58 [in Russian]. 
18. Khoroshilov, S. (2011). Upravlenie orientatsiey solnechnoy elektrostantsii kosmicheskogo bazirovaniya s ispolzovaniem nablyudatelya dlya rasshirennogo vektora sostoyaniya. Tehnicheskaya mehanika, 3, 117–125 [in Russian].