Technique for Obtaining Large Complex Oxide Crystals for Experiments on Muon-to-Electron Conversion Registration in High Energy Physics

TitleTechnique for Obtaining Large Complex Oxide Crystals for Experiments on Muon-to-Electron Conversion Registration in High Energy Physics
Publication TypeJournal Article
Year of Publication2014
AuthorsGerasymov, Ya.
Short TitleSci. innov.
DOI10.15407/scine10.06.024
Volume10
Issue6
SectionResearch and Engineering Innovative Projects of National Academy of Sciences of Ukraine
Pagination24-30
LanguageEnglish
Abstract

Technological approaches for qualitative large size scintillation crystals growing based on rare-earth silicates are proposed. A method of charging the iridium crucibles using the eutectic phase instead of the oxyorthosilicate was developed.

KeywordsCzochralski method, large size single crystal, luminescence, scintillator
References

1. Arzakantsyan, M., Ananyan, N., Gevorgyan, V., and Chanteloup, J.-C.: Growth of Large 90 mm Diameter Yb:YAG Single Crystals with Bagdasarov Method. Optical Materials Express, 2, 9, 1219—1225 (2012).
https://doi.org/10.1364/OME.2.001219
2. Kamada, K., Yanagida, T., Endo, T. et al.: Large Size Single Crystal Growth of Lu3Al5O12:Pr and Their Uniformity of Scintillation Properties. J. of Crystal Growth, 352, 1, 91—94 (2012).
https://doi.org/10.1016/j.jcrysgro.2011.11.079
3. Boatne, L.A.R, Ramey, J.O., Kolopus, J.A. et al.: Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A high-Performance Scintillator for Radiation Detection Applications. J. of Crystal Growth, 379, 63—68 (2013).
https://doi.org/10.1016/j.jcrysgro.2013.01.035
4. The Mu2e Experiment. Ralf Ehrlich for the Mu2e Collaboration.
http://www.mpi-hd.mpg.de/BLV2013/pages/talks/Ehrlich.pdf
5. Mu2e Conceptual Design Report, 30 Nov 2012.
http://mu2e-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=1169;filename=CDR%...
6. COMET Experiment. https://www.hep.ucl.ac.uk/muons/lfv/
7. Petrosyan, A.G., Ovanesyan, K.L., Shirinyan, G.O. et al.: Growth and Light Yield Performance of Dense Ce3+-Doped (Lu,Y)AlO3 Solid Solution Crystals. J. of Crystal Growth, 211, 252—256 (2000).
https://doi.org/10.1016/S0022-0248(99)00810-6
8. Belsky, A.N., Auffray, E, Lecoq P. et al.: Progress in the Development of LuAlO3-Based Scintillators. IEEE Transaction on Nuclear Science, 48, 1095— 1100 (2001).
https://doi.org/10.1109/23.958730
9. Kamada, K., Endo, T., Tsutumi, K. et al.: Composition Engineering in Cerium-Doped (Lu,Gd)3(Ga, Al)5O12 Single Crystal Scintillators. Crystal Growth and Design, 11, 4484—4490 (2011).
https://doi.org/10.1021/cg200694a
10. Chai, B.: Method of Enhancing Performance of Cerium Doped Lutetium Yttrium Orthosilicate Crystals and Crystals Produced Thereby. U.S. Patent 7,166,845 B1 (2007).
11. Chen, J., Zhang, L., and Zhu, R.-Y.: Large Size LYSO Crystals for Future High-Energy Physics Experiments. IEEE Transaction on Nuclear Science, 52, 6, 3133—3140 (2005).
https://doi.org/10.1109/TNS.2005.862923
12. Voloshyna, O.V., Bondar, V.G., Kurtsev. D.O., et al.: Application for Patent of Ukraine no. a201313360 MPK9 C30B15/00. Technique for Filling the Crucible with Basic Material for Growing High-temperature Oxide Single Crystals (2013) (in Ukrainian).
13. Toropov, N.A., Bondar, I.A., Lazarev, A.N., et al. (1971). REE Silicates and Their Analogues. Leningrad: Nauka (in Russian).