Implementation of Molecular Systems for Identification of Genetic Polymorphism in Winter Wheat to Obtain High-Performance Special Varieties

TitleImplementation of Molecular Systems for Identification of Genetic Polymorphism in Winter Wheat to Obtain High-Performance Special Varieties
Publication TypeJournal Article
Year of Publication2016
AuthorsMorgun, BV, Stepanenko, AI, Stepanenko, OV, Bannikova, MO, Holubenko, AV, Nitovska, IO, Maystrov, PD, Grodzinsky, DM
Short TitleSci. innov.
DOI10.15407/scine12.02.035
Volume12
Issue2
SectionResearch and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
Pagination35-49
LanguageEnglish
Abstract
Molecular genetic systems for polymorphism detection to screen the presence of alleles in 100 winter wheat varieties have been designed. Polymerase chain reactions (PCR) have been carried out to identify the relevant genes. The level of spread of alleles related to low and medium activity of polyphenoloxidase (PPO) enzymes has been defined and the validation has been performed. The wheat varieties carrying 1AL.1RS, 1BL.1RS rye translocations and those containing the Tamyb10 gene recessive allele and the Stb4 gene responsible for resistance to Septoria linked to Xgwm111 polymorphic locus have been identified. The waxy wheat and other varieties carrying atypical functional Wx-B1e allele have been determined. One hundred elite and promising wheat varieties have been characterized depending on the presence of alleles of genes determining the grain qualities (PPO, Tamyb10-A1, and Wx genes) and resistance to biotic and abiotic stresses (rye translocative material, Tamyb10-A1, Stb4).
Keywordsallele, grain quality characteristics, polymerase chain reactions, primer, wheat
References
1. Lukaszewski A.J. Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheat / A.J. Lukaszewski. Crop Sci. 1990. V.30: 1151-1153.
https://doi.org/10.2135/cropsci1990.0011183X003000050041x
2. McIntosh R.A. Cataloge of gene symbols for wheat. R.A. McIntosh, G. Hart, M. Gale. Proc. of the 8th Intern. Wheat Genet. Symp. Eds Z.S. Li, Z.Y. Xin. Beijing, China. 1993: 1333-1500.
3. Rabinovich S.V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. S.V. Rabinovich. Euphytica. 1998. V.100: 323-340.
https://doi.org/10.1023/A:1018361819215
4. Schlegel R. Current list of wheats with rye and alien introgression. Shlegel. 2010. V.5-8: 1-14.
5. Singh N.K. Linkage mapping of genes for resistance to leaf, steam and stripe rust and secalins on the short arm of rye chromosome 1R. N.K. Singh, K.W. Shepherd, R.A. McIntosh. Theor. Appl. Genet. 1990. V.80: 609-616.
https://doi.org/10.1007/BF00224219
6. Catalogue of gene symbols for wheat. Proc. of the 10th Intern. Wheat Genet. Symp. R.A. McIntosh, Y. Yamazaki, K.M. Devos [et al.] Eds N.E.Pogna, M. Romano, G. Galterio. Paestum, Italy, 2003: 1-6.
7. Meltz G., Schlegel R., Thiele V. Genetic linkage map of rye. Theor. Appl. Genet. 1992. V.83: 33-45.
8. Kozub N.O., Sozinov I.O., Koljuchyj V.T. ta in. Identyfikacija 1AL/1RS translokacii u sortiv mjakoi pshenyci ukrainskoi selekcii. Cytologyja y genetyka. 2005. 39(4): 20-24 [in Ukrainian].
9. Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1R. Cereal Res. Commun. 2008. V.36: 269-278.
https://doi.org/10.1556/CRC.36.2008.2.7
10. Kim Y.-Y., Kim D.-Y., Donghwan S. et al. Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers yeast. J. of Biologocal Chemistry. 2008. 283(23): 15893-15902.
https://doi.org/10.1074/jbc.M708947200
11. Kozub N.A., Sozynov Y.A., Sozynov A.A. Soprjazhennost 1BL/1RS translokacyy s kachestvennymy y kolychestvennymy pryznakamy u mjagkoj pshenycy T. aestivum. Cytologyja y genetyka. 2001. 35(5): 74-80 [in Ukrainian].
12. Zhou Y., He Z.H., Sui X.X. et al. Genetic improvement of grain yield and associated traits in the Northern China winter wheat region from 1960 to 2000. Crop Sci. 2007. V.47: 245-253.
https://doi.org/10.2135/cropsci2006.03.0175
13. Rybalka O.I. Jakist pshenyci ta ii polipshennja. Kyiv: Logos, 2011 [in Ukrainian].
14. Syvolap Ju.M., Chebotar S.V., Sudarchuk L.V. Detekcija 1RS.1AL, 1RS.1BL ta modyfikovanoi translokacij za 1RS hromosomoju u selekcijnyh form mjakoi pshenyci. Metodychni rekomendacii. Odesa, 2011 [in Ukrainian].
15. Gupta R.B., Shepherd K.W. Identification of rye chromosome 1R translocations and substitutions in hexaploid wheats using storage proteins as genetic markers. Plant Breeding. 1992. V.109: 130-140.
https://doi.org/10.1111/j.1439-0523.1992.tb00163.x
16. Berzonsky W.F., Francki G. Biochemical, molecular and cytogenetic technologies for characterizing 1RS in wheat: a review. Euphytica. 1999. 108: 1-15.
https://doi.org/10.1023/A:1003638131743
17. Dexter J.E., Preston K.R., Matsuo R.R. et al. Development of a high extraction flour for the GRL Pilot Mill to evaluate Canadian wheat potential for the Chinese market. Can Inst Food Sci Technol. 1984. 14: 253-259.
https://doi.org/10.1016/S0315-5463(84)72567-3
18. Feillet P., Autran J.C., Icard-Verniere C. Pasta brownness: an assessment. J Cereal Sci. 2000. V. 32: 215-233.
https://doi.org/10.1006/jcrs.2000.0326
19. Simeone R., Pasqualone A., Clodoveo M.L. et al. Genetic mapping of polyphenol oxidase in tetraploid wheat. Cell Mol Biol Lett. 2002. V.7: 763-769.
20. McCallum J.A., Walker J.R.L. O-diphenol oxidase activity, phenolic content and colour of New Zealand wheats, flours and milling streams. J Cereal Sci. 1990. V.12: 83-96.
https://doi.org/10.1016/S0733-5210(09)80160-4
21. McCallum J.A., Walker J.R.L. Proanthocyanidins in wheat bran. Cereal Chem. 1990. 67(3): 282-285.
22. Fuerst E.P., Xu S.S., Beecher B. Genetic characterization of kernel polyphenol oxidase in wheat and related species. J Cereal Sci. 2008. V.48: 359-368.
https://doi.org/10.1016/j.jcs.2007.10.003
23. Jukanti A.K., Bruckner P.L., Fischer A.M. Evaluation of wheat polyphenol oxidase genes. Cereal Chem. 2004. V.81: 481-485.
https://doi.org/10.1094/CCHEM.2004.81.4.481
24. Massa A.N., Beecher B., Morris C.F. Polyphenol oxidase (PPO) in wheat and wild relatives: molecular evidence for a multigene family. Theor Appl Genet. 2007. V.114: 1239-1247.
https://doi.org/10.1007/s00122-007-0514-4
25. Demeke T., Morris C.F., Campbelle K.J. et al. Wheat Polyphenol Oxidase. Crop Sci. 2001. 41(6): 1750-1757.
https://doi.org/10.2135/cropsci2001.1750
26. Raman R., Raman H., Martin P. Functional gene markers for polyphenol oxidase locus in bread wheat (Triticum aestivum L.). Molecular Breeding. 2007. 19(4): 315-328.
https://doi.org/10.1007/s11032-006-9064-8
27. Sun Y., He Z., Ma W. et al. Alternative splicing in the coding region of Ppo-A1 directly influences the polyphenol oxidase activity in common wheat (Triticum aestivum L.). Functional & Integrative Genomics. 2011. 11(1): 85-93.
https://doi.org/10.1007/s10142-010-0201-4
28. Vatanabe N., Takeuchi A., Nakayama A. Vatanabe N. Inheritance and chromosomal location of the homoeologous genes affecting phenol colour reaction of kernels in durum wheat. Euphytica. 2004. V.139: 87-93.
https://doi.org/10.1007/s10681-004-2255-7
29. Beecher B.S., Skinner D.Z. Molecular cloning and expression analysis of multiple polyphenol oxidase genes in developing wheat (Triticum aestivum) kernels. J Cereal Sci. 2011. V.53: 371-378.
https://doi.org/10.1016/j.jcs.2011.01.015
30. Sun D.J., He Z.H., Xia X.C. et al. A novel STS marker for polyphenol oxidase activity in bread wheat. Mol Breed. 2005. V.16: 209-218.
https://doi.org/10.1007/s11032-005-6618-0
31. He X.Y., He Z.H., Zhang L.P. et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theor Appl Genet. 2007. V.115: 47-58.
https://doi.org/10.1007/s00122-007-0539-8
32. Beecher B.S., Carter A.H., See D.R. Genetic mapping of new seed-expressed polyphenol oxidase genes in wheat (Triticum aestivum L.). Theor Appl Genet. 2012. V.124: 1463-1473.
https://doi.org/10.1007/s00122-012-1801-2
33. Flintham J.E. Different genetic components control coat-imposed and embryo-imposed dormancy in wheat. Seed Sci Res. 2000. V.10: 43-50.
https://doi.org/10.1017/S0960258500000052
34. Warner R.L., Kudrna D.A., Spaeth S.C. et al. Dormancy in white-grain mutants of Chinese Spring wheat (Triticum aestivum L.). Seed Sci Res. 2000. V.10: 51-60.
35. Himi E., Mares D.J., Yanagisawa A. et al. Effect of grain colour gene (R) on grain dormancy and sensitivity of the embryo to abscisic acid (ABA) in wheat. J Exp Bot. 2002. 53(374): 1569-1574.
https://doi.org/10.1093/jxb/erf005
36. Himi E., Nisar A., Noda K. Colour genes (R and Rc) for grain and coleoptile upregulate flavonoid biosynthesis genes in wheat. Genome. 2005. 48(4): 747-754.
https://doi.org/10.1139/g05-026
37. Himi E., Noda K. Isolation and location of three homoeologous dihydroflavonol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. J Exp Bot. 2004. 55(396): 365-375.
https://doi.org/10.1093/jxb/erh046
38. Shaner G., Finney R.E. Weather and epidemics of Septoria leaf blotch of wheat. Phytopathology. 1976. V.66: 781-785.
https://doi.org/10.1094/Phyto-66-781
39. Adhikari T.B., Cavaletto J.R., Dubcovsky J. et al. Molecular mapping of the stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathology. 2004. V.94: 1198-1206.
https://doi.org/10.1094/PHYTO.2004.94.11.1198
40. Brading P.A., Verstappen E.C.P., Kema G.H.J. et al. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology. 2002. V.92: 439-445.
https://doi.org/10.1094/PHYTO.2002.92.4.439
41. McCartney C.A. Inheritance and chromosomal location of race-specific resistance to Mycosphaerella graminicola in wheat. Ph.D. thesis. University of Manitoba, Winnipeg, Canada. 2002.
42. Kopus M.M., Ignateva N.G., Vasjushkina N.E. i dr. Geneticheskij polimorfizm amiloliticheskih fermentov zerna pshenicy i genetika fermentov biosinteza krahmala. Zernovoe hozjajstvo Rossii. 2009, no 4: 23-27 [in Russian].
43. Chao S., Sharp P. Chao S. RELP-based genetic map of wheat homeologous group 7 chromosomes. Teor. Appl. Genet. 1989. V.78: 495-504.
https://doi.org/10.1007/BF00290833
44. Rodriguez-Quijano M., Nieto-Taladriz M.T., Carrillo J.M. Polymorphism of waxy proteins in Iberian hexaploidwheats. Plant Breeding. 1998. V.117: 341-344.
https://doi.org/10.1111/j.1439-0523.1998.tb01951.x
45. Saito M., Vrinten P., Nakamura T. DNA markers for identifying waxy mutations and improving noodle quality in wheat. JARQ. 2010. 44(2): 109-115.
https://doi.org/10.6090/jarq.44.109
46. Zhao X.C., Sharp P.J., Crosbie G. et al. A single genetic locus associated with starch granule properties in a cross between wheat cultivars of disparate noodle quality. J. Cereal Sci. 1998. V.27: 7-13.
https://doi.org/10.1006/jcrs.1997.0145
47. Stewart C.N., Via L.E. Stewart C.N. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Bio Techniques. 1993. 14(5): 748-749.
48. Rybalka O.I., Chervonis M.V., Shherbyna Z.V. Genetychnyj polimorfizm klejkovynnyh bilkiv zerna, povjazanyh z jakistju boroshna pshenyci: metody identyfikacii. Zb. nauk. prac SGI NCNS. 2007. 10(50): 52-71 [in Ukrainian].
49. Chumak V.L., Ivanov S.V., Maksymjuk M.R. Osnovy naukovyh doslidzhen. pidruch. Kyiv: Vyd-vo Nac. aviac. un-tu «NAU-druk», 2009 [in Ukrainian].
50. Vlasenko V.A. Stvorennja vyhidnogo materialu dlja adaptyvnoi selekcii i vyvedennja vysokoproduktyvnyh sortiv pshenyci v umovah Lisostepu Ukrainy. Avtoref. dys. dokt. s.-g. nauk. Odessa, 2008 [in Ukrainian].
51. Rogowsky P.M., Shepherd K.W., Langridge P. Polymerase chain reaction based mapping of rye involving repeated DNA sequences. Genome. 1992. V.35: 621-626.
https://doi.org/10.1139/g92-093
52. Saal D., Wricke G. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome. 1999. V.42: 964-972.
https://doi.org/10.1139/gen-42-5-964
53. Vanzetti L.S., Pflüger L.A., Rodrίguez-Quijano M. et al. Genetic variability for waxy genes in Argentinean bread wheat germplasm. Electronic J. Biotechnol. 2009. V.12: 1-9.
https://doi.org/10.2225/vol12-issue1-fulltext-2
54. Saito M., Vrinten P., Ishikawa G. et al. A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs. Mol. Breeding. 2009. V.23: 209-217.
https://doi.org/10.1007/s11032-008-9226-y
55. Divashuk M.G., Klimushina M.V., Karlov G.I. Molekuljarno-geneticheskaja harakteristika allelja Wx-B1e mjagkoj pshenicy i primenimost DNK markerov dlja ego identifikacii. Genetika. 2011. 47(12): 1611-1615 [in Russian].
56. Vrinten P., Nakamura T., Yamamori M. Molecular characterization of waxy mutations in wheat. Mol. General Genet. 1999. V.261: 463-471.
https://doi.org/10.1007/s004380050989