Video Processing Device for Automated Tracking of the Object Identified in Image by the Operator

TitleVideo Processing Device for Automated Tracking of the Object Identified in Image by the Operator
Publication TypeJournal Article
Year of Publication2016
AuthorsBoyun, VP, Sabelnikov, PYu., Sabelnikov, Yu.A
Short TitleSci. innov.
DOI10.15407/scine12.02.025
Volume12
Issue2
SectionResearch and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
Pagination25-34
LanguageEnglish
Abstract
Results of Developing a Video Processing Device for Automated Tracking of the Object Identified in Image by the Operator research project (code VC 200.18.14) have been presented. The required functions of the device have been analyzed. Algorithms, software and hardware for automated tracking of the object identified in image by the operator have been designed.
Keywordsfiltration, image, object comparison, object tracking, real-time systems
References
1. Bojun V.P., Sabelnikov P.Ju., Sabelnikov Ju.A. Algorytmy analizu televizijnyh i teplovizijnyh zobrazhen u videoprystrojah ta systemah specpryznachennja. Nauka innov. 2014. 10(6): 19-25 [in Ukrainian].
https://doi.org/10.15407/scin10.06.019
2. Müller M., Röder T. Motion templates for automatic classification and retrieval of motion capture data. In Proc. ACM SIGGRAPH Symposium on Computer Animation (SCA). Vienna, Austria, 2006: 137-146.
3. Comaniciu D., Meer P. Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). 2002. 24(5): 603-619.
https://doi.org/10.1109/34.1000236
4. Wang Z., Yang X., Xu Y., Yu S. CamShift guided particle filter for visual tracking. Pattern Recognition Letters (PRL). 2009. 30(4): 407-413.
https://doi.org/10.1016/j.patrec.2008.10.017
5. Baker S., Matthews I. Lucas–Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision (IJCV). 2004. 56(3): 221-255.
https://doi.org/10.1023/B:VISI.0000011205.11775.fd
6. Alfimcev A.N., Lychkov I.I. Metod obnaruzhenija obekta v videopotoke v realnom vremeni. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta. 2011. 17(1): 44-55 [in Russian].
7. Kasinski A., Schmidt A. The architecture and performance of the face and eyes detection system based on the Haar cascade classifiers. Pattern Analysis and Applications (PAA). 2010. 13(2): 197-211.
https://doi.org/10.1007/s10044-009-0150-5
8. Sabelnikov P.Y. Algorithm geometric comparison of contout images of objects. J. of Qafqaz University. Mathematics and Computer Science. (Baku). 2014. 2(2): 166-175.
9. Golovkin B.A. Parallelnye vychislitelnye sistemy. Moskva: Nauka, 1980 [in Russian].
10. Fet Ja.I. Parallelnye processory dlja upravljajushhih sistem. Moskva: Jenergoizdat, 1981 [in Russian].
11. Palagin A.V. Proektirovanie rekonfiguriruemyh cifrovyh sistem: monografija. A.V. Palagin, A.A. Barkalov, V.N. Opanasenko, L.A.Titarenko. Lugansk: Izd-vo VNU im. V. Dalja, 2011 [in Russian].
12. Bojun V.P. Spryjnjattja i obrobka zobrazhen v systemah realnogo chasu. Shtuchnyj intelekt. 2013. No 3(61): 114–125 [in Ukrainian].
13. Bojun V.P. Intelektualni videosystemy realnogo chasu. Materialy pjatoi Mizhnarodnoi naukovo-praktychnoi konferencii «Informacijni tehnologii ta kompjuterna inzhenerija» (ITKI–2015), 27–29 travnja 2015, Ivano-Frankivsk. Vinnycja: Prykarpatskyj nacionalnyj universytet, 2015: 112-114 [in Ukrainian].
14. Pat. Ukrainy na vynahid N106301, BV N15. Sensornyj prystrij dlja vyznachennja miscepolozhennja ta momentiv inercii objekta. Bojun V.P. [in Ukrainian].
15. Pat. Ukrainy na vynahid N109335, BV N15. Sensorna matrycja z obrobkoju zobrazhen. Bojun V.P. [in Ukrainian].