Bioinformation Systems with Detectors and Signal Coding Capabilities




information technology, information system, biosensor, signals coding, ecological monitoring


Introduction. The integration of computer technologies into various fields of science allows the development of new methodologies, hybrid information systems with advanced capabilities, such as EcoIS bioinformation system for monitoring the environment with the use of biological data detectors.
Problem Statement. The development of innovation bioinformation systems with biological data detectors is a very important task, as they have numerous advantages: allow rapid diagnostics and testing of chemicals in the
first moments of their action, may be incorporated easily into electronic registration systems, may serve as elementary analytical units with data coding capabilities, etc.
Purpose. The purpose of this research is to make a comprehensive analysis of different types of biological data detectors to develop a physical model of a biosensor capable of encoding signals and a bioinformation system with such detectors.
Materials and Methods. The comparative analysis of information systems with functions of ecomonitoring and different types of biosensors have been used; the data are taken from electrophysiological experiments on registration of chemosensitive transmembrane electric currents in voltage clamp and patch clamp modes.
Results. The physical model of biosensor has been developed and tested. The integration of the developed biosensors into the electronic bioinformation system by the example of EcoIS authors’ system has been demonstrated. Neuron-like biosensor has been considered an abstraction in the unity of its functions: signal receiver — filter — analyzer — encoder/decoder, where the input information is obtained in the form of chemical structures or electrical signals, after the conversion (recoding) of information it is registered as electrical signals with changed characteristics. The prospects for developing the cutting-edge methods for information protection in systems with biosensors have been shown.

Conclusions. This development may be used for creating a bioinformation system for environmental moni toring with integrated biosensor system and data protection based on the principles and achievements of contemporary biophysics.


Download data is not yet available.


Klyuchko, O. M. (2008). Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 252 p. [in Ukrainian].

Klyuchko, O. M. (2018). Information computer technologies for using in biotechnology: electronic medical information systems. Biotechnol. acta, 11(3), 5-26.

Bănică, Florinel-Gabriel. (2012). Chemical Sensors and Biosensors: Fundamentals and Applications. Chichester, UK: John Wiley & Sons. Р. 576.

Dincer, C., Bruch, R., Costa Rama, E., Fern ndez Abedul, M. T., Merkoçi, A., Manz, A., Urban, G. A., Güder, F. (2019). Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 31(30), 1806739.

Klyuchko, O. M., Klyuchko, Z. F. (2018). Electronic information systems for monitoring of populations and migrations of insects. Biotechnol. acta, 11(5), 5-25.

Klyuchko, O. M., Biletsky, A. Ya., Shutko, V. M., Kolganova, O. O. (2020). Development of scientific and methodological bases of information protection: physical model of artificial molecular memory based on compounds - phenol derivatives. Ukrainian Information Security Research Journal, 22(3), 157-166 [in Ukrainian].

Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L. C. (2008). Nanorobot Hardware Architecture for Medical Defense. Sensors: journal, 8(5), 2932-2958.

Klyuchko, O. M., Pashkivsky A. O., Sheremet D. Yu. (2012). Computer modelling of some nanoelements for radiotechnic and television systems. Electronics and Control systems, 33(3), 102-107. [in Ukrainian].

Klyuchko, O. M., Shutko, V. M., Kolganova, O. O. (2020). Physical model of artificial molecular memory based on two types of organic compounds. Ukrainian Scientific Journal of Information Security, 26(2), 99-107 [in Ukrainian].

Klyuchko, O. М., Biletsky, A. Ya. (2019). Computer recognition of chemical substances based on their electrophysiological characteristics. Biotechnol. acta, 12(5), 5-28.

Patent US 20020182642 A1, DE69832381OD1. Owe Orwar and Jardemark Kent Biosensors and methods of using the same. URL: (Last accessed: 19.06.2020).

Akaike, N., Kawai, N., Kiskin, N. I., Kljuchko, E. M., Krishtal, O. A., Tsyndrenko, A. Ya. (1987). Spider toxin block sexcitatory aminoacid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett., 79, 326-330.

Aramaki, Y., Yashuhara, T., Higashijima, T., Yoshioka, M., Miwa, A., Kawai, N., Nakajima, T. (1986). Chemical characterization of spider toxins JSTX and NSTX. Proc. Japan Academy, 62(9), 1012-1014.

Bateman, A., Boden, P., Dell, A., Duce, I. R., Quicke, D. L., Usherwood, P. N. R. (1985). Postsynaptic block of a glutaminergic synapse by low molecular weight fraction of spider venom. Brain Res., 339(2), 237-244.

Biner, O., Trachsel, C., Moser, A., Kopp, L., Langenegger, N., Kämpfer, U., von Ballmoos, C., Nentwig, W., Schürch, S., Schaller, J., Kuhn-Nentwig, L. (2015). Isolation N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupienniussalei. PLoS One, 10(12), e0143963.

Budd, T., Clinton, P., Dell, A., Duce, I. R., Johnson, S. J., Quicke, D. L. J., Usherwood, P. N. R., Usoh, G. (1988). Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Res., 448(2), 30-39.

Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A., Fry, B. G. (2013). Complex cocktails: the evolutionary novelty of venoms. Trends EcolEvol., 28(4), 219-229.

Cavigliasso, F., Mathé-Hubert, H., Kremmer, L., Rebuf, C., Gatti, J. L., Malausa, T., Colinet, D., Poirié, M. (2019). Rapid and Differential Evolution of the Venom Composition of a Parasitoid Wasp Depending on the Host Strain. Toxins (Basel), 11(11), 629-647.

The Alkaloids: Chemistry and Pharmacology. (1994). (Eds. Cordell, G. A., Brossi, A.) V. 1. USA: Academic Press. 280 p.

Daly, N. L., Wilson, D. (2018). Structural diversity of arthropod venom toxins. Toxicon., 152, 46-56.

Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, Ch. (2012). Fortschritte der Chemie organischer Naturstoffe. In: Progress in the Chemistry of Organic Natural Products. (Ed.). USA: Springer Science & Business Media, 66. 332 p.

Grishin, E. (2016). Spider toxins active on purinergic P2X3 receptor. Toxicon., 116, 72.

Grishin, E. V., Volkova, T. M., Arseniev, A. S. (1988). Antagonists of glutamate receptors from the venom of Argiopelobata spider. Bioorganicheskaya chimia, 14(7), 883-892 [in Russian].

Grishin, E. V., Volkova, T. M., Arsenyev, A. S., Reshetova, O. S., Onoprienko, V. V., Magazanik, L. G., Antonov, S. M., Fedorova, I. M. (1986). Structural and functional characteristics of argiopin - ion channel blocker from venom of spider Argiopelobata. Bioorganicheskaya chimia, 12(8), 1121-1124 [in Russian].

Hashimoto, Y., Endo, Y., Shudo, K., Aramaki, Y., Kawai, N., Nakajima, T. (1987). Synthesis of spider toxin JSTX-3 and its analogs. Tetrah. Lett., 28(30), 3511-3514.

Herzig, V. (2019). Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon, 158, 33-37.

Jackson, H., Usherwood, F. N. R. (1988). Spider toxins as tools for dissecting elements of excitatory amino acids transmission. Trends In Neurosci., 11(6), 278-283.

Jankovic, J., Albanese, A., Atassi, M. Z., Dolly, J. O., Hallett, M., Mayer, N. H. (2009). Botulinum Toxin E-Book: Therapeutic Clinical Practice and Science. USA: Elsevier Health Sciences. 512 p.

Kachel, H. S., Buckingham, S. D., Sattelle, D. B. (2018). Insect toxins - selective pharmacological tools and drug/chemical leads. CurrOpin Insect Sci., 30, 93-98.

Kiskin, N. I., Krishtal, J. A., Tsyndrenko, A. Ya. (1986). Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci. Lett., 63(2), 225-230.

Kusano Tomonobu, Suzuki Hideyuki. (2015). Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. USA: Springer. 336 p.

Lajoiea, M., Zobel-Thropp, B. A., Delahaye, B., Roberts, S., Kumirov, V. K., Bandarian, V., Binford, G. J., Cordesa, M. H. J. (2016). The chemistry and functional diversity of spider phospholipase D toxins. Toxicon, 116, 79.

Lee, S. Y., Kim, S. T., Jung. J. K., Lee, J. H. (2014). A comparison of spider communities in Bt and non-Bt rice fields. Environ Entomol., 43(3), 819-827.

Murua, M. G., Vera, M. A., Michel, A., Casmuz, A. S., Fatoretto, J., Gastaminza, G. (2019). Performance of Field-Collected Spodopterafrugiperda (Lepidoptera: Noctuidae) Strains Exposed to Different Transgenic and Refuge Maize Hybrids in Argentina. Journal of Insect Science, 19(6), 21.

Radis-Baptista, G., Konno, K. (2020). Arthropod Venom Components and Their Potential Usage. Toxins (Basel), 12(2), 82.

Senji Laxme, R. R., Suranse, V., Sunagar, K. (2019). Arthropod venoms: Biochemistry, ecology and evolution. Toxicon, 158, 84-103.

Scharff, N., Coddington, J. A., Blackledge, T. A., Agnarsson, I., Framenau, V. W., Szuts, T., Cheryl, Y., Hayashi, C. Y., Dimitrov, D. (2020). Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics, 36(1), 1-21.

Schwartz, E. F., Mourão, C. B., Moreira, K. G., Camargos, T. S., Mortari, M. R. (2012). Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers, 98(4), 385-405.

Walker, A. A., Robinson, S. D., Yeates, D. K., Jin, J., Baumann, K., Dobson, J., Fry, B. G., King, G. F. (2018). Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 154, 15-27.

Walker, A. A., Rosenthal, M., Undheim, E. E. A., King, G. F. (2018). Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects. J. VisExp., (134), сторінки.

Klyuchko, O. M. (2017). On the mathematical methods in biology and medicine. Biotechnol. acta, 10(3), 31-40.

Klyuchko, O. M. (2017). Application of artificial neural networks method in biotechnology. Biotechnol. acta, 10(4), 5-13.

Klyuchko, O. M., Onopchuk, Yu. M. (2018). Some trends in mathematical modeling for biotechnology. Biotechnol. acta, 11(1), 39-57.

Patent UA 134575 U; G01N33/00, C12N 15/00, A61P 39/00. Klyuchko O. M. Method for monitoring of chemicals influence on bioorganisms in few time intervals [in Ukrainian].

Patent UA 135574 U; C12Q 1/02, G01N33/00, G01N33/50, G016F 11/20. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Piankova O. V. Method of application of monitoring system with biosensor and databases [in Ukrainian].




How to Cite

Klyuchko , O., Beletsky, A., Gonchar, O. ., & Melezhyk, O. (2022). Bioinformation Systems with Detectors and Signal Coding Capabilities. Science and Innovation, 18(2), 73–84.



The Scientific Basis of Innovation