Bioinformation Systems with Detectors and Signal Coding Capabilities
DOI:
https://doi.org/10.15407/scine18.02.073Keywords:
information technology, information system, biosensor, signals coding, ecological monitoringAbstract
Introduction. The integration of computer technologies into various fields of science allows the development of new methodologies, hybrid information systems with advanced capabilities, such as EcoIS bioinformation system for monitoring the environment with the use of biological data detectors.
Problem Statement. The development of innovation bioinformation systems with biological data detectors is a very important task, as they have numerous advantages: allow rapid diagnostics and testing of chemicals in the
first moments of their action, may be incorporated easily into electronic registration systems, may serve as elementary analytical units with data coding capabilities, etc.
Purpose. The purpose of this research is to make a comprehensive analysis of different types of biological data detectors to develop a physical model of a biosensor capable of encoding signals and a bioinformation system with such detectors.
Materials and Methods. The comparative analysis of information systems with functions of ecomonitoring and different types of biosensors have been used; the data are taken from electrophysiological experiments on registration of chemosensitive transmembrane electric currents in voltage clamp and patch clamp modes.
Results. The physical model of biosensor has been developed and tested. The integration of the developed biosensors into the electronic bioinformation system by the example of EcoIS authors’ system has been demonstrated. Neuron-like biosensor has been considered an abstraction in the unity of its functions: signal receiver — filter — analyzer — encoder/decoder, where the input information is obtained in the form of chemical structures or electrical signals, after the conversion (recoding) of information it is registered as electrical signals with changed characteristics. The prospects for developing the cutting-edge methods for information protection in systems with biosensors have been shown.
Conclusions. This development may be used for creating a bioinformation system for environmental moni toring with integrated biosensor system and data protection based on the principles and achievements of contemporary biophysics.
Downloads
References
Klyuchko, O. M. (2008). Information and computer technologies in biology and medicine. Kyiv: NAU-druk. 252 p. [in Ukrainian].
Klyuchko, O. M. (2018). Information computer technologies for using in biotechnology: electronic medical information systems. Biotechnol. acta, 11(3), 5-26. https://doi.org/10.15407/biotech11.03.005
https://doi.org/10.15407/biotech11.03.005
Bănică, Florinel-Gabriel. (2012). Chemical Sensors and Biosensors: Fundamentals and Applications. Chichester, UK: John Wiley & Sons. Р. 576. https://doi.org/10.1002/9781118354162
Dincer, C., Bruch, R., Costa Rama, E., Fern ndez Abedul, M. T., Merkoçi, A., Manz, A., Urban, G. A., Güder, F. (2019). Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 31(30), 1806739. https://doi.org/10.1002/adma.201806739
Klyuchko, O. M., Klyuchko, Z. F. (2018). Electronic information systems for monitoring of populations and migrations of insects. Biotechnol. acta, 11(5), 5-25. https://doi.org/10.15407/biotech11.05.005
Klyuchko, O. M., Biletsky, A. Ya., Shutko, V. M., Kolganova, O. O. (2020). Development of scientific and methodological bases of information protection: physical model of artificial molecular memory based on compounds - phenol derivatives. Ukrainian Information Security Research Journal, 22(3), 157-166 [in Ukrainian].
Cavalcanti, A., Shirinzadeh, B., Zhang, M., Kretly, L. C. (2008). Nanorobot Hardware Architecture for Medical Defense. Sensors: journal, 8(5), 2932-2958. https://doi.org/10.3390/s8052932
Klyuchko, O. M., Pashkivsky A. O., Sheremet D. Yu. (2012). Computer modelling of some nanoelements for radiotechnic and television systems. Electronics and Control systems, 33(3), 102-107. [in Ukrainian]. https://doi.org/10.18372/1990-5548.33.5589
Klyuchko, O. M., Shutko, V. M., Kolganova, O. O. (2020). Physical model of artificial molecular memory based on two types of organic compounds. Ukrainian Scientific Journal of Information Security, 26(2), 99-107 [in Ukrainian].
Klyuchko, O. М., Biletsky, A. Ya. (2019). Computer recognition of chemical substances based on their electrophysiological characteristics. Biotechnol. acta, 12(5), 5-28. https://doi.org/10.15407/biotech12.05.005
Patent US 20020182642 A1, DE69832381OD1. Owe Orwar and Jardemark Kent Biosensors and methods of using the same. URL: https://www.google.com/patents/US20020182642 (Last accessed: 19.06.2020).
Akaike, N., Kawai, N., Kiskin, N. I., Kljuchko, E. M., Krishtal, O. A., Tsyndrenko, A. Ya. (1987). Spider toxin block sexcitatory aminoacid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett., 79, 326-330. https://doi.org/10.1016/0304-3940(87)90453-8
Aramaki, Y., Yashuhara, T., Higashijima, T., Yoshioka, M., Miwa, A., Kawai, N., Nakajima, T. (1986). Chemical characterization of spider toxins JSTX and NSTX. Proc. Japan Academy, 62(9), 1012-1014. https://doi.org/10.2183/pjab.62.359
Bateman, A., Boden, P., Dell, A., Duce, I. R., Quicke, D. L., Usherwood, P. N. R. (1985). Postsynaptic block of a glutaminergic synapse by low molecular weight fraction of spider venom. Brain Res., 339(2), 237-244. https://doi.org/10.1016/0006-8993(85)90088-5
Biner, O., Trachsel, C., Moser, A., Kopp, L., Langenegger, N., Kämpfer, U., von Ballmoos, C., Nentwig, W., Schürch, S., Schaller, J., Kuhn-Nentwig, L. (2015). Isolation N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupienniussalei. PLoS One, 10(12), e0143963. https://doi.org/10.1371/journal.pone.0143963
Budd, T., Clinton, P., Dell, A., Duce, I. R., Johnson, S. J., Quicke, D. L. J., Usherwood, P. N. R., Usoh, G. (1988). Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Res., 448(2), 30-39. https://doi.org/10.1016/0006-8993(88)91098-0
Casewell, N. R., Wüster, W., Vonk, F. J., Harrison, R. A., Fry, B. G. (2013). Complex cocktails: the evolutionary novelty of venoms. Trends EcolEvol., 28(4), 219-229. https://doi.org/10.1016/j.tree.2012.10.020
Cavigliasso, F., Mathé-Hubert, H., Kremmer, L., Rebuf, C., Gatti, J. L., Malausa, T., Colinet, D., Poirié, M. (2019). Rapid and Differential Evolution of the Venom Composition of a Parasitoid Wasp Depending on the Host Strain. Toxins (Basel), 11(11), 629-647. https://doi.org/10.3390/toxins11110629
The Alkaloids: Chemistry and Pharmacology. (1994). (Eds. Cordell, G. A., Brossi, A.) V. 1. USA: Academic Press. 280 p. https://www.elsevier.com/books/the-alkaloids-chemistry-and-pharmacology/brossi/978-0-12-469541-2
Daly, N. L., Wilson, D. (2018). Structural diversity of arthropod venom toxins. Toxicon., 152, 46-56.
https://doi.org/10.1016/j.toxicon.2018.07.018
Herz, W., Kirby, G. W., Moore, R. E., Steglich, W., Tamm, Ch. (2012). Fortschritte der Chemie organischer Naturstoffe. In: Progress in the Chemistry of Organic Natural Products. (Ed.). USA: Springer Science & Business Media, 66. 332 p.
Grishin, E. (2016). Spider toxins active on purinergic P2X3 receptor. Toxicon., 116, 72.
https://doi.org/10.1016/j.toxicon.2016.01.003
Grishin, E. V., Volkova, T. M., Arseniev, A. S. (1988). Antagonists of glutamate receptors from the venom of Argiopelobata spider. Bioorganicheskaya chimia, 14(7), 883-892 [in Russian].
Grishin, E. V., Volkova, T. M., Arsenyev, A. S., Reshetova, O. S., Onoprienko, V. V., Magazanik, L. G., Antonov, S. M., Fedorova, I. M. (1986). Structural and functional characteristics of argiopin - ion channel blocker from venom of spider Argiopelobata. Bioorganicheskaya chimia, 12(8), 1121-1124 [in Russian].
Hashimoto, Y., Endo, Y., Shudo, K., Aramaki, Y., Kawai, N., Nakajima, T. (1987). Synthesis of spider toxin JSTX-3 and its analogs. Tetrah. Lett., 28(30), 3511-3514. https://doi.org/10.1016/S0040-4039(00)96340-8
Herzig, V. (2019). Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon, 158, 33-37. https://doi.org/10.1016/j.toxicon.2018.11.312
Jackson, H., Usherwood, F. N. R. (1988). Spider toxins as tools for dissecting elements of excitatory amino acids transmission. Trends In Neurosci., 11(6), 278-283. https://doi.org/10.1016/0166-2236(88)90112-9
Jankovic, J., Albanese, A., Atassi, M. Z., Dolly, J. O., Hallett, M., Mayer, N. H. (2009). Botulinum Toxin E-Book: Therapeutic Clinical Practice and Science. USA: Elsevier Health Sciences. 512 p.
Kachel, H. S., Buckingham, S. D., Sattelle, D. B. (2018). Insect toxins - selective pharmacological tools and drug/chemical leads. CurrOpin Insect Sci., 30, 93-98. https://doi.org/10.1016/j.cois.2018.10.001
Kiskin, N. I., Krishtal, J. A., Tsyndrenko, A. Ya. (1986). Excitatory amino acid receptors in hippocampal neurons: kainate fails to desensitize them. Neurosci. Lett., 63(2), 225-230. https://doi.org/10.1016/0304-3940(86)90360-5
Kusano Tomonobu, Suzuki Hideyuki. (2015). Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. USA: Springer. 336 p. https://doi.org/10.1007/978-4-431-55212-3
Lajoiea, M., Zobel-Thropp, B. A., Delahaye, B., Roberts, S., Kumirov, V. K., Bandarian, V., Binford, G. J., Cordesa, M. H. J. (2016). The chemistry and functional diversity of spider phospholipase D toxins. Toxicon, 116, 79. https://doi.org/10.1016/j.toxicon.2016.01.025
Lee, S. Y., Kim, S. T., Jung. J. K., Lee, J. H. (2014). A comparison of spider communities in Bt and non-Bt rice fields. Environ Entomol., 43(3), 819-827. https://doi.org/10.1603/EN12259
Murua, M. G., Vera, M. A., Michel, A., Casmuz, A. S., Fatoretto, J., Gastaminza, G. (2019). Performance of Field-Collected Spodopterafrugiperda (Lepidoptera: Noctuidae) Strains Exposed to Different Transgenic and Refuge Maize Hybrids in Argentina. Journal of Insect Science, 19(6), 21. https://doi.org/10.1093/jisesa/iez110
Radis-Baptista, G., Konno, K. (2020). Arthropod Venom Components and Their Potential Usage. Toxins (Basel), 12(2), 82. https://doi.org/10.3390/toxins12020082
Senji Laxme, R. R., Suranse, V., Sunagar, K. (2019). Arthropod venoms: Biochemistry, ecology and evolution. Toxicon, 158, 84-103. https://doi.org/10.1016/j.toxicon.2018.11.433
Scharff, N., Coddington, J. A., Blackledge, T. A., Agnarsson, I., Framenau, V. W., Szuts, T., Cheryl, Y., Hayashi, C. Y., Dimitrov, D. (2020). Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics, 36(1), 1-21. https://doi.org/10.1111/cla.12382
Schwartz, E. F., Mourão, C. B., Moreira, K. G., Camargos, T. S., Mortari, M. R. (2012). Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers, 98(4), 385-405. https://doi.org/10.1002/bip.22100
Walker, A. A., Robinson, S. D., Yeates, D. K., Jin, J., Baumann, K., Dobson, J., Fry, B. G., King, G. F. (2018). Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 154, 15-27. https://doi.org/10.1016/j.toxicon.2018.09.004
Walker, A. A., Rosenthal, M., Undheim, E. E. A., King, G. F. (2018). Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects. J. VisExp., (134), сторінки. https://doi.org/10.3791/57729
Klyuchko, O. M. (2017). On the mathematical methods in biology and medicine. Biotechnol. acta, 10(3), 31-40. https://doi.org/10.15407/biotech10.03.031
Klyuchko, O. M. (2017). Application of artificial neural networks method in biotechnology. Biotechnol. acta, 10(4), 5-13. https://doi.org/10.15407/biotech10.04.005
Klyuchko, O. M., Onopchuk, Yu. M. (2018). Some trends in mathematical modeling for biotechnology. Biotechnol. acta, 11(1), 39-57. https://doi.org/10.15407/biotech11.01.039
Patent UA 134575 U; G01N33/00, C12N 15/00, A61P 39/00. Klyuchko O. M. Method for monitoring of chemicals influence on bioorganisms in few time intervals [in Ukrainian].
Patent UA 135574 U; C12Q 1/02, G01N33/00, G01N33/50, G016F 11/20. Klyuchko O. M., Biletsky A. Ya., Lizunov G. V., Piankova O. V. Method of application of monitoring system with biosensor and databases [in Ukrainian].