Bend Sensors Based on Nanocellulose and Polyvinyl Alcohol Bionanocomposites for Wearable Electronics

Authors

DOI:

https://doi.org/10.15407/scine20.05.071

Keywords:

bend sensor, nanocellulose, PVA, bionanocomposite, biodegradability, wearable sensor

Abstract

Introduction. Currently, artificial polymers that pollute the environment are used in bend sensors. Nanocellulose (NC) is a biodegradable and flexible material, but it has a low elongation ability, which limits its use for human motion detection. Creating NC-based composites is a way to solve this problem.
Problem Statement. Synthesizing bend sensors based on biodegradable material (bionanocomposite of nanocellulose (NC) and polyvinyl alcohol (PVA)) to be used in sensors for analyzing human muscle activity is an urgent problem.
Purpose. To determine the effect of the sensor substrate material on the operating parameters of bend sensors.
Materials and Methods. The synthesis methods have been as follows: acid hydrolysis of organosolvent cellulose to obtain NC, vacuum casting to obtain NC-PVC nanocomposite films, and high-frequency magnetron sputtering to produce strain-sensitive films. The following research methods have been employed: optical spectrometry, mechanical elongation and tensile testing, souil burial degradation test, and strain measurement.
Results. NC-PVC composites have been synthesized and bend sensors have been created on their basis. The main electrical parameters of the obtained bend sensors are as follows: the strain sensitivity coefficient is 7.52, the reversibility ranges within 9—23%, the time drift varies within 0.17–0.5%/min. The biodegradability of the composite is 21—70% mass loss in 4.5 months. The effect of the sensor substrate material on the functional properties of these sensors has been investigated. It has been found that the addition of PVA to NC improves the optical and mechanical properties of the composites.
Conclusions. The optimal composition of the composite can be considered a mix of NC-PVC in a ratio of 1 : 1. The developed bend sensors can be used to monitor human muscle activity for medicine, sports, and rehabilitation

Downloads

Download data is not yet available.

References

Lapshuda, V., Koval, V., Barbash, V., Dusheiko, M., Yashchenko, O., Malyuta, S. (2022). Flexible humidity sensors based on nanocellulose. In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO) (Kyiv, 2022, Ukraine,), 208—212. https://doi.org/10.1109/ELNANO54667.2022.9927092

Linevych, Y., Koval, V., Dusheiko, M., Yakymenko, Y., Lakyda, M., Barbash, V. (2022). Silicon diode structures based on nanowires for temperature sensing application. In 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO) (Kyiv, 2022, Ukraine), 190—195. https://doi.org/10.1109/ELNANO54667.2022.9927122

Candan, Z., Tozluoglu, A., Gonultas, O., Yildirim, M., Fidan, H., Alma, M. H., Salan, T. (2022). Nanocellulose: Sus tai - nable biomaterial for developing novel adhesives and composites. In: Industrial Applications of Nanocellulose and Its Nanocomposites, 49—137. https://doi.org/10.1016/B978-0-323-89909-3.00015-8

Naidonov, A. O., Dusheiko, M. H., Koval, V. M., Barbash, V. A. (2022). Disposable wearable sensors based on nanocellulose for biomedical applications. Microsystems, Electronics and Acoustics, 27(3), 264043—1. https://doi.org/10.20535/2523- 4455.mea.264043

Kuchuk, H., Podorozhniak, A., Liubchenko, N., Onischenko, D. (2021). System of license plate recognition considering large camera shooting angles. Radioelectronic and Computer Systems, 4225(4), 82—91. https://doi.org/10.32620/REKS.2021.4.07

Sokolov, D. D., Merlak, V. Y., Orekhov, A. A., Plakhtyev, A. P. (2019). Environmental monitoring with wireless sensor networks application: Development and experiments. Radioelectronic and Computer Systems, 3(3), 40—47. https://doi.org/10.32620/REKS.2019.3.04

Wang, B., Dai, L., Hunter, L., Zhang, L., Yang, G., Chen, J., Zhang, X., He, Z., Ni, Y. (2021). A multifunctional nano cellulose-based hydrogel for strain sensing and self-powering applications. Carbohydrate Polymers, 268, 118210. https://doi.org/10.1016/J.CARBPOL.2021.118210

Kumar, S., Ngasainao, M., Sharma, D., Sengar, M., Gahlot, A. P. S., Shukla, S., Kumari, P. (2022). Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers, 298, 120052. https://doi.org/10.1016/J.CARBPOL.2022.120052

Ji, F., Sun, Z., Hang, T. (2022). Flexible piezoresistive pressure sensors based on nanocellulose aerogels for human motion monitoring: A review. Composites Communications, 35, 101351. https://doi.org/10.1016/J.COCO.2022.101351

Qin, M., Yuan, W., Zhang, X. (2022). Preparation of PAA/PAM/MXene/TA hydrogel with antioxidant, healable ability as strain sensor. Colloids and Surfaces B: Biointerfaces, 214, 112482. https://doi.org/10.1016/J.COLSURFB.2022.112482

Li, Y., Yang, D., Wu, Z. (2023). Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocom posite hydrogels for reliable strain and pressure sensors. Nano Energy, 109, 108324. https://doi.org/10.1016/J.NANOEN. 2023.108324

Li, Y., Gong, Q., Han, L. (2022). Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performance self-powered strain sensors. Carbohydrate Polymers, 298, 120060. https://doi.org/10.1016/J.CARBPOL.2022.120060

Aouida, M., Ramotar, D. (2018). Identifi cation of essential yeast genes involved in polyamine resistance. Gene, 677, 361—369. https://doi.org/10.1016/J.GENE.2018.08.066

Kim, D. S., Jeong, Y. J., Shanmugasundaram, A. (2021). 64 PI/PDMS hybrid cantilever arrays with an integrated strain sensor for a high-throughput drug toxicity screening application. Biosensors and Bioelectronics, 190, 113380. https://doi.org/10.1016/J.BIOS.2021.113380

Gong, T., Jia, J., Sun, X. R., Li, W., Di, K., Bao, R. Y., Yang, W. (2023). Design strategy for hierarchical structure of carbon black on microporous elastomer surface toward stretchable and compressive strain sensors. Carbon, 206, 53—61. https://doi.org/10.1016/J.CARBON.2023.02.008

Morais, J. P. S., Rosa, M. D. F., De Souza Filho, M. D. S. M., Nascimento, L. D., Do Nascimento, D. M., Cassales, A. R. (2013). Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydrate Polymers, 91(1), 229—235. https://doi.org/10.1016/J.CARBPOL.2012.08.010

Barbash, V., Yaschenko, O. (2021). Preparation, properties and use of nanocellulose from non-wood plant materials. IntechOpen. https://doi.org/10.5772/INTECHOPEN.94272

Zhang, X., Guo, J., Liu, Y., Hao, X., Ji, X., Yang, Q. (2023). Biochemical preparation of hydrophobic and lipophilic na nocellulose from hemp stalk. Materials Today Chemistry, 27, 101346. https://doi.org/10.1016/J.MTCHEM.2022.101346

Singh, H., Kumar Verma, A., Kumar Trivedi, A., Gupta, M. K. (2023). Characterization of nanocellulose isolated from bamboo fi bers. Materials Today: Proceedings. Available online 4 March 2023. https://doi.org/10.1016/J.MATPR.2023.02.300

Zhang, C., Jiang, Q., Liu, A. (2020). The bead-like Li3 V2 (PO4 )3 /NC nanofi bers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydrate Polymers, 237, 116134. https://doi.org/10.1016/J.CARBPOL.2020.116134

Babicka, M., Woźniak, M., Bartkowiak, M. (2022). Miscanthus and Sorghum as sustainable biomass sources for nanocellulose production. Industrial Crops and Products, 186, 115177. https://doi.org/10.1016/J.INDCROP.2022.115177

Deng, Y., Xi, J., Meng, L., Lou, Y., Seidi, F., Wu, W., Xiao, H. (2022). Stimuli-responsive nanocellulose hydrogels: An overview. European Polymer Journal, 180, 111591. https://doi.org/10.1016/J.EURPOLYMJ.2022.111591

Barhoum, A., Rastogi, V. K., Mahur, B. K., Rastogi, A., Abdel-Haleem, F. M., Samyn, P. (2022). Nanocelluloses as new generation materials: Natural resources, structure-related properties, engineering nanostructures, and technical challenges. Materials Today Chemistry, 26, 101247. https://doi.org/10.1016/J.MTCHEM.2022.101247

Guo, B., He, S., Yao, M. (2023). MXene-containing anisotropic hydrogels strain sensors with enhanced sensing performance for human motion monitoring and wireless transmission. Chemical Engineering Journal, 461, 142099. https://doi.org/10.1016/J.CEJ.2023.142099

Zhang, X. (2023). Dry and frost resistance conductive hydrogels based on carbon nanotubes hybrids for use as fl exible strain sensor. Sensors and Actuators A: Physical, 350, 114143. https://doi.org/10.1016/J.SNA.2022.114143

Jakubowski, M., Domke, A., Ratajczak, M., Szczuka, J., Buchwald, T., Voelkel, A., Sandomierski, M. (2023). Chitosan modifi ed with lanthanum ions as implantable hydrogel for local delivery of bisphosphonates. International Journal of Biological Macromolecules, 230, 123429. https://doi.org/10.1016/J.IJ BIOMAC.2023.123429

Siegel, A. C., Phillips, S. T., Dickey, M. D., Lu, N., Suo, Z., Whitesides, G. M. (2010). Foldable printed circuit boards on paper substrates. Advanced Functional Materials, 20(1), 28—35. https://doi.org/10.1002/ADFM.200901363

Toth, L. (1987). A model of substrate surface roughness eff ect on the electrical properties of thin fi lms. Vacuum, 37(1—2), 103—106. https://doi.org/10.1016/0042-207X(87)90094-7

Gebhart, D. D., Krapf, A., Gammer, C., Merle, B., Cordill, M. J. (2022). Linking through-thickness cracks in metallic thin fi lms to in-situ electrical resistance peak broadening. Scripta Materialia, 212, 114550. https://doi.org/10.1016/J.SCRIPTAMAT.2022.114550

Downloads

Published

2024-09-02

How to Cite

NAIDONOV, A., KOVAL, V., BARBASH, V., DUSHEIKO, M., & YASCHENKO, O. (2024). Bend Sensors Based on Nanocellulose and Polyvinyl Alcohol Bionanocomposites for Wearable Electronics. Science and Innovation, 20(5), 71–82. https://doi.org/10.15407/scine20.05.071

Issue

Section

The Scientific Basis of Innovation