Nanocellulose-Based Resistive Sensors for Air Humidity Measurements

Authors

DOI:

https://doi.org/10.15407/scine20.04.049

Keywords:

Nanocellulose, humidity sensors, biodegradable sensors, resistive sensors

Abstract

Introduction. The measurement of relative air humidity plays a crucial role in various aspects of human life, such as climate control systems, medical breath and skin hydration monitoring. Typically, humidity sensors use inorganic materials and petroleum-derived polymers. However, there is a growing trend towards the transition to biodegradable materials, which eliminates the need for waste disposal.
Problem Statement. Currently, nanocellulose (NC) has been being explored as a promising material for humidity sensors. However, the influence of the chemical composition and nanoparticle size of NC on the sensor characteristics remains understudied.
Purpose. This study aims to investigate the influence of the chemical composition and structure of NC on the parameters of humidity sensors.
Materials and Methods. NC has been synthesized from reed stalks and wheat straw bz the oxidation and acid hydrolysis methods. NC-film sensors having a mass within 0.3—3 mg have been fabricated. The static parameters (response, sensitivity, reversibility, and repeatability) and the dynamic parameters (short and long-term stability, response and recovery time) of the sensors have been analyzed.
Results. The manufacturing method influences the NC chemical composition, while the origin material affects its structure. The sensors produced by the oxidation method have demonstrated improved sensitivity (2.69 · 106), response (0.2 (%RH)–1), recovery time (60 s) and long-term stability (1.44%) as compared with those made by the hydrolysis method. Additionally, the application of wheat straw NC as origin material has resulted in improved reversibility (5%), repeatability (5% deviation), short-term stability (30% deviation), and response time (1 s) as compared with the reed stalks NC.
Conclusions. It has been established that the origin material of nanocellulose influences the reversibility, repeatability, response time, and short-term stability of the sensors. The manufacturing method has effect on the sensitivity, response, recovery time, and long-term stability of the sensors.

Downloads

Download data is not yet available.

References

Linevych, Y., Koval, V., Dusheiko, M., Yakymenko, Y., Lakyda, M., Barbash, V. (2022). Silicon Diode Structures Based on Nanowires for Temperature Sensing Application. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 190—195. https://doi.org/10.1109/ELNANO54667.2022.9927122

Wang, H., Zhao, M., Zhu, W., Liu, Z., Wang, G., Tang, S., Chen, D., Lee, J.-M., Yang, S., Ding, G. (2020). High-performance humidity sensor constructed with vertically aligned graphene arrays on silicon Schottky junctions. Materials Let ters, 277, 128343. https://doi.org/10.1016/j.matlet.2020.128343

Lacour, V., Herth, E., Lardet-Vieudrin, F., Dubowski, J. J., Leblois, T. (2015). GaAs Based on Bulk Acoustic Wave Sensor for Biological Molecules Detection. Procedia Engineering, 120, 721—726. https://doi.org/10.1016/j.proeng.2015.08.772

Kim, S. J., Lee, S.-W., Song, J. D., Kwon, Y.-W., Lee, K.-J., Koo, H. C. (2018). An InSb-based magnetoresistive biosensor using Fe3 O4 nanoparticles. Sensors and Actuators B: Chemical, 255, 2894—2899. https://doi.org/10.1016/j. snb.2017.09.108

Xu, J., He, X., Xu, K., Liao, H., Zhang, C. (2023). Synthesis and optimization strategies of nanostructured metal oxides for chemiresistive methanol sensors. Ceramics International, 49(13), 21113—21132. https://doi.org/10.1016/j.ceramint.2023.03.274

Zhang, L., Xie, G., Liu, F., Ji, H. (2023). High hydrogen selectivity Pd-Ni alloy fi lm hydrogen sensor with hybrid organosilica membranes. Journal of Alloys and Compounds, 941, 168898. https://doi.org/10.1016/j.jallcom.2023.168898

Zhang, M., Wang, Y., Liu, K., Liu, Y., Xu, T., Du, H., Si, C. (2023). Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofi brils hydrogels for wearable strain sensors. Carbohydrate Polymers, 305, 120567. https://doi.org/10.1016/j.carbpol.2023.120567

Xu, T., Yang, L., Zhang, X., Lu, G., Bai, Z. (2023). A highly sensitive electrochemical sensor by growing Ag nanoparticles on the surface of PPy@PEDOT:PSS fi lm for detecting sodium hydroxymethanesulfi nate molecules. Food Chemistry: X, 18, 100701. https://doi.org/10.1016/j.fochx.2023.100701

Anil, A. G., Singh, S., Joji, J., Singh, J., Ramamurthy, P. C. (2023). Conducting Polymer Based Sensor. In Encyclopedia of Materials: Electronics (pp. 28—35). Elsevier. https://doi.org/10.1016/B978-0-12-819728-8.00125-X

Cai, J., He, Y., Zhou, Y., Yu, H., Luo, B., Liu, M. (2022). Polyethylene glycol grafted chitin nanocrystals enhanced, stretchable, freezing-tolerant ionic conductive organohydrogel for strain sensors. Composites Part A: Applied Science and Manufacturing, 155, 106813. https://doi.org/10.1016/j.compositesa.2022.106813

Wu, Y., Ren, Y., Liang, Y., Li, Y. (2022). Semi-IPN ionogel based on poly (ionic liquids)/xanthan gum for highly sensitive pressure sensor. International Journal of Biological Macromolecules, 223, 327—334. https://doi.org/10.1016/j. ij biomac.2022.10.263

Naidonov, A., Koval, V., Barbash, V., Dusheiko, M., Yashchenko, O., Yakymenko, O. (2022). Nanocellulose-Based Biodegradable Bend Sensors. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 292—297. https://doi.org/10.1109/ELNANO54667.2022.9927070

Tai, H., Wang, S., Duan, Z., Jiang, Y. (2020). Evolution of breath analysis based on humidity and gas sensors: Potential and challenges. Sensors and Actuators B: Chemical, 318, 128104. https://doi.org/10.1016/j.snb.2020.128104

Rehman, H. M. M. U., Prasanna, A. P. S., Rehman, M. M., Khan, M., Kim, S.-J., Kim, W. Y. (2023). Edible rice paperbased multifunctional humidity sensor powered by triboelectricity. Sustainable Materials and Technologies, 36, e00596. https://doi.org/10.1016/j.susmat.2023.e00596

Tseng, S.-F., Tsai, Y.-S. (2022). Highly sensitive humidity sensors based on Li-C3N4 composites on porous graphene fl exible electrodes. Applied Surface Science, 606, 155001. https://doi.org/10.1016/j.apsusc.2022.155001

Yoshida, A., Wang, Y.-F., Tachibana, S., Hasegawa, A., Sekine, T., Takeda, Y., Hong, J., Kumaki, D., Shiba, T., Tokito, S. (2022). Printed, all-carbon-based fl exible humidity sensor using a cellulose nanofi ber/graphene nanoplatelet composite. Carbon Trends, 7, 100166. https://doi.org/10.1016/j.cartre.2022.100166

Neil Weste, D. H. (2022). CMOS VLSI Design: A Circuits and Systems Perspective (Michael Hirsch, Ed.; 4th ed.).

Lapshuda, V., Koval, V., Barbash, V., Dusheiko, M., Yashchenko, O., Malyuta, S. (2022). Flexible Humidity Sensors Based on Nanocellulose. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), 208—212. https://doi.org/10.1109/ELNANO54667.2022.9927092

Lapshuda, V., Koval, V., Barbash, V., Dusheiko, M., Yaschenko, O., Yakymenko, O. (2023). Nanocellulose-Based Composites for Flexible and Biodegradable Humidity Sensors for Breath Monitoring. IEEE Sensors Letters, 7(10), 1—4. https://doi.org/10.1109/LSENS.2023.3311669

Zhang, Z., Chen, M., Alem, S., Tao, Y., Chu, T.-Y., Xiao, G., Ramful, C., Griffi n, R. (2022). Printed fl exible capacitive hu mi dity sensors for fi eld application. Sensors and Actuators B: Chemical, 359, 131620. https://doi.org/10.1016/j.snb. 2022.131620

Ramaprasad, A. T., Rao, V. (2010). Chitin-polyaniline blend as humidity sensor. Sensors and Actuators B: Chemical, 148(1), 117—125. https://doi.org/10.1016/j.snb.2010.05.044

Yu, C., Gong, H., Zhang, Z., Ni, K., Zhao, C. (2021). Optical fi ber humidity sensor based on the vernier eff ect of the Fab ryPerot interferometer coated with PVA. Optical Fiber Technology, 67, 102744. https://doi.org/10.1016/j.yofte.2021.102744

Chen, Q., Mao, K., Yao, Y., Huang, X., Zhang, Z. (2022). Nanodiamond/cellulose nanocrystals composite-based acoustic humidity sensor. Sensors and Actuators B: Chemical, 373, 132748. https://doi.org/10.1016/j.snb.2022.132748

Li, X., Tan, Q., Qin, L., Zhang, L., Liang, X., Yan, X. (2022). A high-sensitivity MoS2/graphene oxide nanocomposite humidity sensor based on surface acoustic wave. Sensors and Actuators A: Physical, 341, 113573. https://doi.org/10.1016/j. sna.2022.113573

Zhao, F., Cheng, H., Zhang, Z., Jiang, L., Qu, L. (2015). Direct Power Generation from a Graphene Oxide Film under Moisture. Advanced Materials, 27(29), 4351—4357. https://doi.org/10.1002/adma.201501867

Luo, Q., Huang, Y., Lei, Z., Peng, J., Xu, D., Guo, X., Wu, Y. (2021). Wood-derived nanocellulose hydrogel incorporating gold nanoclusters using in situ multistep reactions for effi cient sorption and sensitive detection of mercury ion. Industrial Crops and Products, 173, 114142. https://doi.org/10.1016/j.indcrop.2021.114142

Thi Thanh Hop, T., Thi Mai, D., Duc Cong, T., Thi Y. Nhi, T., Duc Loi, V., Thi Mai Huong, N., Trinh Tung, N. (2022). A com prehensive study on preparation of nanocellulose from bleached wood pulps by TEMPO-mediated oxidation. Results in Chemistry, 4, 100540. https://doi.org/10.1016/j.rechem.2022.100540

Lapshuda, V., Koval, V., Barbash, V., Dusheiko, M., Yaschenko, O., Yakymenko, O. (2022). Capacitive and Resistive Humidity Sensors Based on Flexible Nanocellulose Film for Wearable Electronics. Radioelectron. Commun. Syst., 65, 597— 608. https://doi.org/10.3103/S0735272722120019

Kumar Trivedi, A., Kumar, A., Gupta, M. K. (2023). Extraction of nanocellulose from wheat straw and its characterization. Materials Today: Proceedings, 78, 48—54. https://doi.org/10.1016/j.matpr.2022.11.038

Zhang, C., Jiang, Q., Liu, A., Wu, K., Yang, Y., Lu, J., Cheng, Y., Wang, H. (2020). The bead-like Li3 V2 (PO4 )3 /NC na no fi bers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydrate Polymers, 237, 116134. https://doi.org/10.1016/j.carbpol.2020.116134

Anyanwu, B. U., Oluwole, O. O., Fayomi, O. S. I., Olorunnisola, A. O., Popoola, A. P. I., Kuye, S. I. (2021). Synthesis, corrosion and structural characterization of kenaf nanocellulose on Zn—ZnO—Cn electrolytic coatings of mild steel for advanced applications. Case Studies in Chemical and Environmental Engineering, 3, 100017. https://doi.org/10.1016/j.cscee.2020.100017

Downloads

Published

2024-07-02

How to Cite

LAPSHUDA, V., KOVAL, V., DUSHEIKO, M., YASIIEVYCH, Y., BARBASH, V., & YASHCHENKO, O. (2024). Nanocellulose-Based Resistive Sensors for Air Humidity Measurements. Science and Innovation, 20(4), 49–60. https://doi.org/10.15407/scine20.04.049

Issue

Section

The Scientific Basis of Innovation