Innovation Approaches to the Construction of Bioinformation Systems with Databases: Keys Based on Genetic Codes

Authors

DOI:

https://doi.org/10.15407/scine20.04.033

Keywords:

information technologies, information system, databases, primary key, coding, biomedical information, chemical substances

Abstract

Introduction. The application of achievements of biology, biophysics in technique opens new opportunities for
innovations, in particular for construction of relational databases (DB) with biomedical data, helps solve problems and obtain results at qualitatively new level.
Problem Statement. The development of information systems with biomedical information is relevant both in
peacetime and in wartime. Implementation of contemporary information and computer technologies for the development of information systems with DB in biology and medicine has its own specifics. That is why innovative
approaches for the construction of biomedical relational DBs with use of keys with advanced capabilities are
relevant.
Purpose. The development and design of biomedical relational DBs with keys based on genetic codes of organisms in alphanumeric expression with further application as part of the novel bioinformation systems.
Materials and Methods. Methods of object-oriented system analysis for optimal construction of DBs with
biomedical information, method of Entity-Relations (ER)-diagrams design, methods of DB design.
Results. By the example of relational DB with information about some fish species, the approach based on
object-oriented analysis for the construction of DBs in optimal way has been suggested, applied, and the algorithm of their construction has been described. Particular attention is attracted to the solution of creating keys based on genetic codes of fishes in alphanumeric expression (especially the primary keys) that provide links between individual tables of DBs, ensure integrity of information in such system and reliable access. The high level of data individualization with using the keys based on genetic codes in DB has been analyzed and substantiated.
Conclusions. The results can be used for the creation of appropriate information systems, including bioinformation systems. They have both theoretical, for the further development of DBs construction methods, and practical value for improving some methods of data protection and can be useful to solve tasks of construction of DBs with biomedical materials for peacetime and wartime use. 

Downloads

Download data is not yet available.

References

Guidelines for Human Biobanks and Genetic Research Databases (HBGRDs). URL: https://www.oecd.org/sti/emergingtech/guidelines-for-human-biobanks-and-genetic-research-databases.htm (Last accessed: 20.04.2023).

Fokkema, I. F. A. C., Kroon, M., López Hernández, J. A., Asscheman, D., Lugtenburg, I., Hoogenboom, J., den Dunnen, J. T. (2021). The LOVD3 platform: effi cient genome-wide sharing of genetic variants. Eur. J. Hum. Genet., 29(12), 1796—1803. https://doi.org/10.1038/s41431-021-00959-x.

Van Ness, Lindsey. DNA Databases Are Boon to Police But Menace to Privacy, Critics Say. URL: https://www.pewtrusts. org/en/research-and-analysis/blogs/stateline/2020/02/20/dna-databases-are-boon-to-police-but-menace-to-privacycritics-say (Last accessed: 20.04.2023).

Brownsword, R. Genetic Databases and the First Signs of Regulatory Opportunity (Chapter 8 in: “Rights, Regulation and Technological Revolution”) URL: https://academic.oup.com/book/5017/chapter-abstract/147524388?redirected From=fulltext (Last accessed: 20.04.2023).

Klyuchko, O. M. (2018). Electronic expert systems for biology and medicine. Biotechnologia Acta, 11(6), 5—28. https:// doi.org/10.15407/biotech11.06.005

Klyuchko, O. M., Buchatsky, L. P., Rud, Yu. P., Melezhyk, O. V. (2019). Creation of fi sh databases for electronic interactive map: tables and keys. Fisheries science of Ukraine, 50(4), 37—57. https://doi.org/10.15407/fsu2019.04.037

Klyuchko, O. M., Klyuchko, Z. F. (2018). Electronic information systems for monitoring of populations and migrations of insects. Biotechnologia Acta, 11(5), 5—25. https://doi.org/10.15407/biotech11.05.005

Klyuchko, O. M., Klyuchko, Z. F. (2018). Electronic databases of Arthropods: methods and applications. Biotechnologia Acta, 11(4), 28—49. https://doi.org/10.15407/biotech11.04.028

Patent UA 143919 U. Method of application of monitoring system with databases and keys in symbolic records of genetic codes of fi sh and other aquatic organisms. Klyuchko, O. M., Biletsky, A. Ya., Lizunova, A. G. [in Ukrainian].

Patent UA 143918 U. Method of applying monitoring system with databases and keys in form of images of genetic codes of fi sh and other aquatic organisms. Klyuchko, O. M., Biletsky, A. Ya., Lizunova, A. G. [in Ukrainian].

Patent UA 143926 U. Method of use of monitoring system with databases and keys in form of images of genetic codes of biological organisms. Klyuchko, O. M., Biletsky, A. Ya., Lizunova, A. G. [in Ukrainian].

Patent UA 155203 U. Method of application of information monitoring system with databases and keys in symbolic records of genetic codes of biological organisms. Klyuchko, O. M., Biletsky, A. Ya., Lizunova, A. G. G01N 33/00, G01N 33/50, G06F 16/00 [in Ukrainian].

Klyuchko, O. M. (2017). On the mathematical methods in biology and medicine. Biotechnologia Acta, 10(3), 31—40. https://doi.org/10.15407/biotech10.03.031

Klyuchko, O. M., Onopchuk, Yu. M. (2018). Some trends in mathematical modeling for biotechnology. Biotechnologia Acta, 11(1), 39—57. https://doi.org/10.15407/biotech11.01.039

Eronen, L., Toivonen, H. (2012). Biomine: predicting links between biological entities using network models of heterogeneous databases. Bioinformatics, 13, 119. https://doi.org/10.1186/1471-2105-13-119

Bor-Sen, Chen, Shih-Kuang, Yang, Chung-Yu, Lan, Yung-Jen, Chuang. (2008). A systems biology approach to construct the gene regulatory network of systemic infl ammation via microarray and databases mining. Medical Genomics, 1, 46. https://doi.org/10.1186/1755-8794-1-46

Pornputtapong, N., Wanichthanarak, K., Nilsson, A., Nookaew, I., Nielsen, J. (2014). A dedicated database system for handling multi-level data in systems biology. Source Code for Biology and Medicine, 9, 17. https://doi.org/10.1186/1751- 0473-9-17.

Stobbe, M. D., Swertz, M. A., Thiele, I., Rengaw, T., van Kampen, A. H. C., Moerland, P. D. (2013). Consensus and confl ict cards for metabolic pathway databases. Systems Biology, 7, 50. https://doi.org/10.1186/1752-0509-7—50

van Ommen, B., Bouwman, J., Dragsted, L. O., Drevon, C. A., Elliott, R., …, Wopereis, S. (2010). Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies. Genes & Nutrition, 5, 167. https://doi.org/10.1007/s12263-010-0167-9

Momin, A. A., James, B. P., Motter, T. C., Kadara, H. N., Powis, G., Wistuba, I. I. (2011). Integrating whole transcriptome sequence data and public databases for analysis of somatic mutations in tumors. Genome Biology, 12(1), 44. https://doi.org/10.1186/gb-2011-12-s1-p44

Stobbe, M. D., Houten, S. M., Jansen, G. A., van Kampen, A. H. C., Moerland, P. D. (2011). Critical assessment of hu man metabolic pathway databases: a stepping stone for future integration. Systems Biology, 5, 165. https://doi.org/10.1186/1752-0509-5-165

Chowbina, S. R., Wu, X., Zhang, F., Li, P. M., Pandey, R., Kasamsetty, H. N., Chen, J. Y. (2009). HPD: an online integrated human pathway database enabling systems biology studies. Bioinformatics, 10(11), S5. https://doi.org/10.1186/1471- 2105-10-S11-S5

Goldstein, A. M. (2010). The NCBI Databases: an Evolutionist’s Perspective. Evolution: Education and Outreach, 3, 258. https://doi.org/10.1007/s12052-010-0258-5

Albà, M. (2000). Links to molecular biology databases. Genome Biology, 1—4, https://doi.org/10.1186/gb-2000-1-1- reports235

Alfi eri, R., Merelli, I., Mosca, E., Milanesi, L. (2007). A data integration approach for cell cycle analysis oriented to model simulation in systems biology. Systems Biology, 1, 35. https://doi.org/10.1186/1752-0509-1-35

Walsh, J. R., Sen, T. Z., Dickerson, J. A. (2014). A computational platform to maintain and migrate manual functional annotations for BioCyc databases. Systems Biology, 8, 115.

Tedesco, P. A., Beauchard,О., Bigorne, R., Blanchet, S., Buisson, L., ..., Oberdorff , T. (2017). A global database on freshwater fi sh species occurrence in drainage basins. Sci. Data, 4, 170141. https://doi.org/10.1038/sdata.2017.141

Maier, C. V., Long, J. G., Hemminger, B. M., Giddings, M. C. (2009). Ultra-Structure database design methodology for managing systems biology data and analyses. Bioinformatics, 10, 254. https://doi.org/10.1186/1471-2105-10-254

Tan, T. W., Xie, C., De Silva, M., Kuan Siong, Lim, Patro, C. P. K., ..., Khan, A. M. (2013). Simple re-instantiation of small databases using cloud computing. Genomics, 14(5), 5—13. https://doi.org/10.1186/1471-2164-14-S5-S13

Bouzaglo, D., Chasida, I., Tsur, E. E. (2018). Distributed retrieval engine for the development of cloud-deployed biological databases. BioData Mining, 11, 26. https://doi.org/10.1186/s13040-018-0185-5

Schnase, J. L., Cushing, J., Frame, M., Frondorf A., Landis E., Maier D., Silberschatz A. (2003). Information technology challenges of biodiversity and ecosystems informatics. Information Systems, 28(4), 339—345. https://doi.org/10.1016/S0306-4379(02)00070-4

Chen, Y., Shi, M., Cheng, Y., Zhang, W., Tang, Q., Xia Q. (2018). FVD: The fish-associated virus database. Infect. Genet., 58, 23—26. https://doi.org/10.1016/j.meegid.2017.11.004

User Reference for Fisheries Improvement Projects Database .

Froese, R., Pauli, D. (2000). Fish Base 2000: Concepts, designs and data sources. ICLARM. Los Banos, Philippines.

Arnot, J. A., Mackay, D., Parkerton, T. F., Bonnell, M. (2008). A database of fi sh biotransformation rates for organic chemicals. Environmental Toxicology and Chemistry, 27(11), 2263—2270. URL: https://setac.onlinelibrary.wiley.com/ doi/full/10.1897/08-058.1. https://doi.org/10.1897/08-058.1 (Last accessed: 20.04.2023).

Del Rio, A., Barbosa, A. J. M., Caporuscio, F. (2011). Use of large multiconformational databases with structure-based pharmacophore models for fast screening of commercial compound collections. Journal of Cheminformatics, 3(1), P27. https://doi.org/10.1186/1758-2946-3-S1-P27

Patent UA 131863 U. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Klyuchko, O. M., Biletsky, A. Y., Navrotskyi, D. A. [in Ukrainian].

Daoliang, Li, Zetian, Fu, Yanqing Duan. (2002). Fish-Expert: a web-based expert system for fi sh disease diagnosis. Expert Systems with Applications, 23, 311—320. https://doi.org/10.1016/S0957-4174(02)00050-7

Di Génova, A. D., Aravena, A., Zapata, L., González, M., Maass, A., Iturra, L. (2011).

Tkachuk, R., Tkachuk, A., Stadnik, D., Yanenko, O. Ensuring high-precision testing of implants in the regulation of intraeye pressure. (2021). Intl. Conf. Advanced Applied Energy and Information Technologies (15—17 December, 2021, Ternopil, Ukraine), 157—161. Ternopil.

Yukalo, V. G., Storozh, L. A., Datsyshyn, K. Ye., Krupa, O. M. (2018). Electrophoretic systems for the preparative fractionation of protein precursors of bioactive peptides from cow’s milk. Food science and technology, 12(2), 26—32. https://doi.org/10.15673/fst.v12i2.932

Yukalo, V., Datsyshyn, K., Krupa, O., Pavlistova, N. (2019). Obtaining of -LG, -LA and BSA protein fractions from milk whey. Ukrainian Food Journal, 8(4), 788—798. https://doi.org/10.24263/2304-974X-2019-8-4-10

Gonchar, O. O., Maznychenko, A. V., Klyuchko, O. M., Mankovska, I. M., Butowska, K., Borowik, A., Piosik, Ja., Sokolowska, I. (2021). C60 Fullerene Reduces 3-Nitropropionic Acid-Induced Oxidative Stress Disorders and Mitochondrial Dysfunction in Rats by Modulation of P53, Bcl-2and Nrf2 Targeted Proteins. International Journal of Molecular Sciences, 22(11), 5444—5468. https://doi.org/10.3390/ij ms22115444

Microsoft Academy: Methods and means of software engineering. URL: https://www.intuit.ru/studies/courses/2190/ 237/lecture/6124 (Last accessed: 24.04.2023).

Harrington, Jan L. (2005). Object-oriented database design clearly explained. USA: Academic Press.

Van der Laan, R., Eschmeyer, W. N., Fricke, R. (2014). Family-group names of Recent fi shes. Zootaxa Monograph., 3882 (1), 1—230. https://doi.org/10.11646/zootaxa.3882.1.1

Movchan, Yu. V. (2009). Fishes of Ukraine (taxonomy, nomenclature, remarks). Collection of works of Zoological Museum, 40, 47—87.

Red Book of Ukraine. Fauna (2009). Kyiv [in Ukrainian].

Fricke, R., Eschmeyer, W. N., R. van der Laan. (2019) Eschmeyer’s catalog of fi shes: genera, species. URL: http:// researcharchive.calacademy.org/research/ichthyology/catalog (Last accessed: 24.04.2023).

Franchuk, G. M., Isaenko, V. M. (2005). Ecology, aviation and cosmos. Kyiv. 456 p. [in Ukrainian].

Cyprinus carpio isolate SPL01 chromosome A17, ASM1834038v1, whole genome shotgun sequence. URL: https://www. ncbi.nlm.nih.gov/nuccore/NC_056588.1?from=25191087&to=25198977&report=genbank&strand=true (Last acces sed: 23.04.2023).

Barbus borysthenicus isolate PK-977 cytochrome b (cytb) gene, partial cds; mitochondrial gene for mitochondrial product. URL: https://www.ncbi.nlm.nih.gov/nuccore/AY331026.1 (Last accessed: 23.04.2023).

Human gene databases. URL: https://www.genecards.org/ (Last accessed: 23.04.2023).

Human genetic research databases. URL: https://www.alrc.gov.au/publication/essentially-yours-the-protection-ofhuman-genetic-information-in-australia-alrc-report-96/18-human-genetic-research-databases/what-are-human-geneticresearch-databases/ (Last accessed: 23.04.2023).

Downloads

Published

2024-07-01

How to Cite

KLYUCHKO, O., BELETSKY, A., MELEZHYK, O., & GONCHAR, O. (2024). Innovation Approaches to the Construction of Bioinformation Systems with Databases: Keys Based on Genetic Codes. Science and Innovation, 20(4), 33–48. https://doi.org/10.15407/scine20.04.033

Issue

Section

The Scientific Basis of Innovation