Convolutional Neural Networks for Determining the Ion Beam Impact on a Space Debris Object

Authors

DOI:

https://doi.org/10.15407/scine19.06.019

Keywords:

space debris removal, deep learning, ion beam force, convolution neural networks

Abstract

Introduction. Space debris is a serious problem that significantly complicates space activity. This problem can be mitigated by active space debris removal. The ion beam shepherd (IBS) concept assumes the contactless removal of a space debris object (SDO) by the plume of an ion thruster (IT). Techniques for determining the force impact from the IT to the SDO are of crucial importance for implementing the IBS concept.
Problem Statement. A launcher’s upper stage, approximated by a cylinder, is considered an SDO deorbited by the plume of the IT. The SDO can change its orientation and position relative to the shepherd satellite. The shepherd satellite shall be able to determine the force transmitted to the SDO by the IT, using only SDO’s images as the input information.
Purpose. The study aims to develop a neural net model that can map an SDO image to the force transmitted by an IT plume to this object and estimate the accuracy of such models.
Material and Methods. Plasma physics methods are used to obtain ground truth values of the ion beam force. The deep learning methodology is applied to create neural net models.
Results. Three different approaches for end-to-end ion force determination have been investigated. The first model uses a single convolutional neural net (CNN). The second model is an ensemble network consisting of four sub-models, and a classifier is used to pick the correct sub-model. The last model is similar to the first one but is trained on all images used for the second model. After training, all three models’ accuracy and computational complexity are estimated. These estimates demonstrate the acceptable performance of CNN-based models.
Conclusions. This paper demonstrates that CNNs can be used to determine the force impact without knowledge about the SDO position and orientation and significantly faster than the previous methods.

Downloads

Download data is not yet available.

Author Biography

C. KHOROSHYLOV, Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine

Leading researcher, Dr. Sci. in Tech., Professor

References

Liou, J.-C., Anilkumar, A. K., Virgili, B., Hanada, Toshiya, Krag, H., Lewis, H., Raj, M., Rao, M., Rossi, A., Sharma, R. (2013). “Stability of the future LEO environment — an IADC comparison study”. Proc. of the 6th European Conference on Space Debris (22—25 April, 2013, Darmstadt). URL: https://conference.sdo.esoc.esa.int/proceedings/sdc6/paper/199 (Last accessed: 28.03.2022).

Hakima, H., Reza Emami M. (2018). Assessment of active methods for removal of LEO debris. Acta Astronautica, 144, 225—243. https://doi.org/10.1016/j.actaastro.2017.12.036

Dron, N. M., Golubek, A. V., Dreus, А. Yu., Dubovik, L. G. (2019). Prospects for the use of the combined method for deorbiting of large-scale space debris from near-Earth space. Space Science and Technology, 25(6), 61—69. https://doi. org/10.15407/knit2019.06.061

Lapkhanov, E., Khoroshylov, S. (2019). Development of the aeromagnetic space debris deorbiting system. Eastern-European Journal of Enterprise Technologies, 5(5 (101)), 30—37. https://doi.org/10.15587/1729-4061.2019.179382

Bombardelli, C., Peláez, J. (2011). Ion Beam Shepherd for Contactless Space Debris Removal. J. Guid. Control Dyn., 34(3), 916—920. https://doi.org/10.2514/1.51832

Urrutxua, H., Bombardelli, C., Hedo, J. M. (2019). A preliminary design procedure for an ion-beam shepherd mission. Aerospace Science and Technology, 88, 421—435. https://doi.org/10.1016/j.ast.2019.03.038

Khoroshylov, S. (2018). Relative motion control system of SC for contactless space debris removal. Sci. innov., 14(4), 5—16. https://doi.org/10.15407/scin14.04.005

Cichocki, F., Merino, M., Ahedo, E. (2015). Collisionless Plasma thruster plume expansion model. Plasma Sources Science and Technology, 24(3), 83—95. https://doi.org/10.1088/0963-0252/24/3/035006

Bombardelli, C., Urrutxua, H., Merino, M., Ahedo, E., Pelaez, J. (2012). Relative dynamics and control of an ion beam shepherd satellite. Spaceflight mechanics, 143, 2145—2158.

Bombardelli, C., Urrutxua, H., Merino, M., Ahedo, E., Pelaez, J., Olympio, J. (2011). Dynamics of ion-beam-propelled space debris. 22-nd International Symposium on Space Flight Dynamics (February 28 — March 4, 2011, Sao Jose dos Campos, Brasil). 1—13.

Alpatov, A., Cichocki, F., Fokov, A., Khoroshylov, S., Merino, M., Zakrzhevskii, A. (2016). Determination of the force transmitted by an ion thruster plasma plume to an orbital object. Acta Astronaut, 119(2—3), 241—251. https://doi.org/ 10.1016/j.actaastro.2015.11.020

Fokov, A. A., Khoroshilov, S. V. (2016). Validation of simplified method for calculation of transmitted force from plume of electric thruster to orbital object. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2, 55—66.

Alpatov, A., Cichocki, F., Fokov, A., Khoroshylov, S., Merino, M., Zakrzhevskii, A. (2015). Algorithm for Determination of Force Transmitted by Plume of Ion Thruster to Orbital Object Using Photo Camera. Proceedings of the 66th International Astronautical Congress, IAC (12—16 October, 2015, Jerusalem, Israel). 2239—2247.

Redka, M. O., Khoroshylov, S. V. (2022). Determination of the force impact of an ion thruster plume on an orbital object via deep learning. Space Science and Technology, 28 (5), 15—26. https://doi.org/10.15407/knit2022.05.015

Khoroshylov, S. V., Redka, M. O. (2021). Deep learning for space guidance, navigation, and control. Space Science and Technology, 27 (6), 38—52. https://doi.org/10.15407/knit2021.06.038

Koizumi, S., Kikuya, Y., Sasaki, K., Masuda, Y., Iwasaki, Y., Watanabe, K., Yatsu, Y., Matunaga, S. (2018). Development of attitude sensor using deep learning. AIAA/USU Conference on Small Satellites, AIAA (4—9 August, 2018, Utah, USA). Session 7: Advanced Concepts II.

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251—257. https://doi.org/10.1016/0893-6080(91)90009-T

Venkatesan, R., Li, B. (2017). Convolutional Neural Networks in Visual Computing: A Concise Guide. CRC Press. https://doi.org/10.4324/9781315154282

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., Jackel, L. D. Backpropagation Applied to Handwritten Zip Code Recognition. AT&T Bell Laboratories.

Steinkraus, D., Simard, P., Buck I., (2005). Using GPUs for Machine Learning Algorithms. 12th International Conference on Document Analysis and Recognition (ICDAR 2005) (25—28 August 2013, Washington, DC, USA). 1115—1119. https:// doi.org/10.1109/ICDAR.2005.251

Glorot, X., Bengio, Y. (2010). Understanding the Difficulty of Training Deep Feedforward Neural Networks. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research (13—15 May, 2010 Sardinia, Italy). 9, 249—256.

Khoroshylov, S. (2019). Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations. Acta Astronaut., 164, 254—261. https://doi.org/10.1016/j.actaastro.2019.08.016

Downloads

Published

2023-12-22

How to Cite

REDKA, M., & KHOROSHYLOV, C. (2023). Convolutional Neural Networks for Determining the Ion Beam Impact on a Space Debris Object. Science and Innovation, 19(6), 19–30. https://doi.org/10.15407/scine19.06.019

Issue

Section

Scientific and Technical Innovation Projects of the National Academy of Sciences