Analysis of Scintillation Materials for Nuclear Medicine on the Basis of Patent Analytics




Keywords: nuclear medicine, scintillation material, object of intellectual property, analytics.


Introduction. It is known that the object of intellectual property is an important source of technological information that can be used for assessing the industry development and the prospects for further study of scintillation materials, finding competitors, etc.
Problem Statement. Today, nuclear medicine is very popular all over the world. Scintillation crystals are one of the main materials used in modern diagnostic devices. Therefore, the development of highly efficient scintillation materials for medical imaging systems is a relevant task.
Purpose. The patent activity analysis for nuclear medicine is purposed to find out the dynamics of patenting scintillation materials used in this field for the period 1992—2022 as well as to determine the most priority and important research directions.
Material and Methods. The patent search has been made with the help of special search programs: information database and specialized database Inventions (Utility models) in Ukraine. While doing the research, we used the methods of analysis, systematization, and comparison.
Results. Assessing the development of scintillation materials for nuclear medicine based on patent analysis allows us to analyse the available scintillation materials for this industry, to find new materials for it, and to identify more promising directions for its development.
Conclusions. American companies have the largest number of patents on scintillation materials used in nuclear medicine, but in the Ukrainian market, there are similar patents. The main scintillators for nuclear medicine are BGO, CdWO4, ZnWO4, LSO, LYSO, GSO, NaI, CsI, BaF2, LaBr3, LuAP, LuAG, GGAG, LGSO, CaF2: Eu, ZnSe : Te, Gd2O2S : Tb or mixed scintillators such as NaBaLaBr6, Cs2NaLaCl6, etc. in the design of pixels. They are used as bulk crystals, ceramics, films and others. There appear patents on new materials, such as MAPbBr3, CeBr3+x, Tl2LiLaBr6, the properties and prospects for application of which have been currently being studied.


Download data is not yet available.


Paul Lecoq. (2016). Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, pectrometers, Detectors and Associated Equipment, 809, 130—139. .

Moses, William W. (1999). Scintillator requirements for medical imaging. International Conference on Inorganic Scintillators and Their Applications: SCINT99 (16—20 Aug 1999, Moscow). Moscow.

US 2021/0333417 A1. Nelson Robert Sigurd, Nelson William Bert. Structured Detectors and Detector Systems for Radiation Imaging.

Hofstadter, R. (1948). Alkali Halide Scintillation Counters. Phys. Rev., 74, 100.

US 7696482 B1. Nagarkar V., Gaysinskiy V. High spatial resolution radiation detector.

US 7361901 B1. Gaysinskiy V. Scintillator detector fabrication.

EP 2847617 B1. Valentino Frank Charles. Spect/pet Imaging System.

Patent of Ukraine № 87792. Zaslavskyi B. H., Kudin Ol. M., Hryniov B. V., Vasetskyi S. I., Kolesnikov Ol. V., Mitichkin A. I. Ovcharenko N. V. Scintillation material based on caesium iodide, activated with thallium iodide and method for ob taining thereof [in Ukrainian].

Patent of Ukraine № 93840. Vasetskyi S. I., Zaslavskyi B. H., Kolesnikov Ol. V., Tymoshenko M. M. Method for growth of monocrystalls based on sodium iodide and cerium iodide [in Ukrainian].

Patent of Ukraine № 108798. Taraniuk V. I., Kolesnikov O. V. Неktіn О. V. Method for producing crystals, in particular large area crystalline plates [in Ukrainian].

US 8242452 B1. Shah Kanai S., Higgins William M., Van Loef Edgar V., Glodo Jaroslaw. Cesium and sodium-containing scintillator compositions.

US 8575553. Shah Kanai S., Higgins William M., Van Loef Edgar V., Glodo Jaroslaw. Cesium and sodium-containing scintillator compositions.

US 2008/0208044 A1. Lecoq Paul, Mundler Olivier, Cohen-Bacrie Claude. Combined Nuclear and Sonographic Imaging Apparatus and Method.

С. Chai, Bruce and Ji, Yangyang (2005). Lutetium Yttrium Orthosilicate Single Crystal Scintillator Detector. UCF Patents. 737.

US 4664744 A. Le Gal Herve, Damelet Jean L. Process for the production of bismuth germanate monocrystals with a high scintillation response.

CN103695994A. Hu Zhixiang, Zhu Liu, Wen Chongbin, Luo Tao. Growth method of bismuth germanate single crystal.

WO 2020/242331 A2. O’doherty Jim William, Bouhali Othmane, Toufique Yassine. Coincidence Detection System for Measuring Arterial Blood Time-Activity Curves and Methods of Using Same.

US 2007/0181814 A1. Crosetto Darlo B. Method and apparatus for determining depth of interactions in a detector for three-dimensional complete body screening.

Patent of Ukraine № 77593. Bondar V. H., Hriniov B. V., Kryvoshein V. I., Pyrohov Y. M., Ryzhykov V. D. Method for growing monocrystals of bismuth germanate [in Ukrainian].

Patent of Ukraine № 9942. Kukhtina N. M., Ryzhykov V. D., Pyrohov Y., Borodenko Y. A., Burachas S. F. Method for heat treatment of crystals of bismuth germanate [in Ukrainian].

Sidletsky, O. Ts., Grynyov, B. V. (2019). Scintillation crystals based on solid substitution solutions. Kharkov [in Ukrainian].

WO 2015/185988 A1. Zagumennyi Alexander Iosifovich. Cerium Doped Rare-Earth Ortosilicate Materials Having Defects for Improvement or Scintillation Parameters.

US 9529100 B2. Choi Yong, Choe Hyeok Jun. Positron emission tomography detector and positron emission tomography system using same.

Melcher, Charles L. (2000). Scintillation crystals for pet. Nuclear medicine, 41(6), 1051—1055.

Moszynski, M. A., Nassalski, W., Czarnacki, A., Syntfeld-Kazuch, D., Wolski, T., Batsch, H. Ishibashi. (2007). Energy re solution of LGSO scintillators. Ieee Transactions on Nuclear Science, 54(3), 725—731.

Patent of Ukraine № 87767. Velikhov Y. M., Viahin O. H., Hanina I. I., Zhmurin P. M., Maliukin Y. V., Masalov A. O. Nano crystalline luminophor of lutecium oxyorthosilicate activated with metals of rare-earth elements and film scintillator ba sed thereon [in Ukrainian].

Patent of Ukraine № 108932. Voloshyna Ol. V., Bondar V. H., Kurtsev D. O., Kononets V.V., Arkhypov P. V., …, Tkachenko S. A. Method for welding deposition of crucible by charge, in particular for growing of high temperature oxides [in Uk rainian].

Patent of Ukraine № 92705. Bondar V. H., Voloshyna Ol. V., Hryniov B. V., Zhukov L. S., Kurtsev D. Ol., Sidletskyi Ol. T. Metod for producing melt for growing crystals of lutecium AND gadolinium oxyorthosilicates [in Ukrainian].

EP 2836628 A4. Zagumennyi A. I., Zavartev Y. D., Kutovoi S. A., Kozlov V. A., Zerrouk F. A., Zavertyaev M. V. MultiDoped Lutetium Based Oxyorthosilicate Scintillators Having Improved Photonic Properties.

DE 102008033960 A1. Heismann B., Henseler D. Radiation detector module i.e. X-ray radiation detector module, for e.g. X-ray-computer tomography-device, has photo-detection unit connected with scintillation elements, detecting light, and including silicon-photomultiplier.

Baccaro, S., Blaiek, K., Notaristefani, F., Maly, P., Mares, J. A., Pani, R., Pellegrini, R., Soluri, A. (1995). Scintillation properties of YAP:Ce. Nuclear Instruments and Methods in Physics Research, A 361, 209—215.

EP 1875210 B1. Peter Jörg, Schulz Ralf, Unholtz Daniel. Optical Imaging Detector.

US 8923588 B2. Laurence T., Griesmer J. J., Kolthammer J. A., Thon A., Brinks R., Degenhardt C. Method and system for improved TOF PET reconstruction.

Patent of Ukraine №123344. Gerasimov Ya. V., Sidletskyi O. Ts., Arkhipov P. V., Tkachenko S. A.. Method of growing oxide crystals activated by cerium [in Ukrainian].

Patent of Ukraine №87683. Iltis Alain. Material-scintillator on basis of rare earth elements with decreased radioactive phone noise, method to obtain it, detector and its application [in Ukrainian].

Patent of Ukraine №139789. Rebrova N. V., Grippa O. Yu., Rebrov O. L., Kononets V. V., Horbachova T. E., Cherginets V. L. Method of obtaining high-purity bromide scincillation single crystals [in Ukrainian].

US 2022/0206168 A1. Benlloch B. J. M., Gimenez A. V., Gonzalez M. A. J., Ilisie V. Method and Device for Detecting Gamma Rays With the Ability to Determine Multiple Interactions and Their Corresponding Time Sequencе.

US 2007/0284534. Srivastava A. M., Duclos S. J., Comanzo H. A. Scintillators for detecting radiation, and related methods and articles.

Patent of Ukraine № 77543. Nagorna L. L., Vostretsov Y. Y., Hriniov B. V., Tupitsyna I. A. Method for growing scintillation monocrystals of alloyed cadmium tungstate [in Ukrainian].

Patent of Ukraine № 86104. Tupitsyna I. A., Nahorna L. L., Hryniov B. V. Method for heat treatment of scintillation monocrystals of cadmium tungstate [in Ukrainian].

Patent of Ukraine № 105335. Tupitsyna I. A., Hryniov B. V., Dubovik Ol. M., Yakubovska H. H. Scintillation single crystal on the basis of ZINC tungstate [in Ukrainian].

Makek, M., Bosnar, D., Kožuljevi, A.-M., Paveli, L. (2020). Investigation of GaGG:Ce with TOFPET2 ASIC Readout for Applications in Gamma Imaging Systems. Crystals, 10, 1073.

Patent of Ukraine № 86154. Bondar V. H., Kryvoshein V. I. Method for reduction of crucibles from precious metals, in particular from iridium [in Ukrainian].

Patent of Ukraine № 88507. Bondar V. H., Kryvoshein V. I. Method for fusing of charge of monocrystals of compound oxydes (variants) [in Ukrainian].

US 7612.342 B1. Nagarkar Vivek V. Very bright scintillators.

US6630077B2. Shiang J. J., Setlur A. A., Srivastava A. M., Comanzo H. Ann. Terbium- or lutetium — containing garnet phosphors and scintillators for detection of high-energy radiation.

CN114031403A. An Ning, Yu. Jinfeng, Di Juqing. Preparation method and application of gadolinium oxysulfide scintillation ceramic.

US4507560A. Mathers James E., Yale Ramon L. Terbium-activated gadolinium oxysulfide X-ray phosphor.

Patent of Ukraine №106004. Miroshnychenko S. I., Nevhasymyi A. O. Compound optical fiber connector and x-ray detector based thereon [in ukrainian].

Patent of Ukraine № 60818. Miroshnychenko S. I., Nevhasymyi A. O. X rays receiver for x-rays apparatus [in Ukrainian].

US 2022/0259496. Yu Jinqiu, Luo Liang, Diao Chengpeng, Cui Lei, Wu Hao, He Huaqiang. Rare Earth Halide Scintillation Material.

US 11254867 B1. Hawrami Rastgo, Pandian Lakshmi Soundara, Shah Kanai S. Thallium-based scintillator materials.

EP 4033271 A1. Zhang Lei, Konstantinou Georgios, Antonakakis Tryfon, Lecoq Paul René Michel. Devices and Methods for Detecting Gamma Radiation.

US 11269090 B2. Saliba Michael. Low-temperature perovskite scintillators and devices with low-temperature perovskite scintillators.

US 11224656 B2. Makale Milan T., Wrasidlo Wolfgang J., Kesari Santosh, Mckittrick Joanna, Hirata Flores Gustavo A., Graeve Olivia. Scintillator nanocrystal-containing compositions and methods for their use.




How to Cite

DANYLENKO, Y., & NEPOKUPNA , T. (2023). Analysis of Scintillation Materials for Nuclear Medicine on the Basis of Patent Analytics. Science and Innovation, 19(5), 43–56.



Scientific and Technical Innovation Projects of the National Academy of Sciences