wheat, yellow rust, harmfulness, resistance genes, PCR analysis, varieties


Introduction. Fungal diseases, in particular, yellow rust, are the most harmful and widespread among wheat diseases. Due to environmental and climatic changes, yellow rust (Puccinia striiformis West. f. sp. tritici) has been actively spreading and causing damage to wheat crops, particular in Ukraine. One of the aspects of overcoming this problem can be the monitoring of disease spread and the use of advanced methods of molecular genetics and breeding to create new resistant varieties.
Problem Statement. The specificity of the pathogen races complicates fighting against this disease, with epiphytotics leading to significant losses of the wheat yield. The application of advanced methods for identifying the genotypes that have effective Yr resistance genes to yellow rust, with the use of molecular genetic markers, will allow to avoid significant economic losses.
Purpose. The purpose of this research is to generalize data on the harmfulness of yellow rust and to evaluate the usability of the molecular genetic methods for resistance genes analysis.
Material and Methods. Ukrainian-bred wheat varieties with resistance to known races of yellow rust have been used as materials to be studied. The yellow rust resistance genes (Yr10 and Yr36) have been identified by polymerase chain reaction (PCR) with the use of our own original primers.
Results. The losses of the wheat crop as a result of damage by yellow rust have been shown to depend on the resistance of the variety, the period of infection, the duration of the development of the disease, and the climatic conditions. The original primers have been developed and optimal conditions for PCR have been determined. The genes for resistance to yellow rust in soft winter wheat varieties has been identified.
Conclusions. The results have indicated the absence of alleles that can ensure resistance to new harmful races of yellow rust in Ukrainian-bred wheat varieties. This implies the need to use sources with Yr10 and Yr36 genes in the breeding process.


Download data is not yet available.


CIMMYT URL: https://www.cimmyt.org/ (Last accessed: 29.09.2022).

Chen, X. M. (2005). Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27(3), 314—337. https://doi.org/10.1080/07060660509507230

Singh, R., Huerta-Espino, J., Bhavani, S., Njau, P., Autrique, E., Govindan, V., …, Hao, Y. (2015). Breeding durable adult plant resistance to stem rust in spring wheat-progress made in a decade since the launch of Borlaug Global Rust Initiative (BGRI) (17–20 September, Sydney, Australia). URL: https://globalrust.org/content/breeding-durable-adult-plant-resistance-stem-rust-spring-wheat-progress-made-decade-launch (Last accessed: 01.09.2022).

The Cereal Rusts, volume II: Diseases, distribution, epidemiology, and control. (1985). (Eds. Roelfs A. P., Bushnell W. R.). Acad. Press. INC, Orlando, Florida, 592. https://doi.org/10.1016/C2013-0-10449-7

O’Brian, L., Brown, J. S., Young, R. M., Pascoe, I. (1980). Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Australasian Plant Pathology, 9, 14—20. https://doi.org/10.1071/APP9800014

Line, R. F. (2002). Stripe rust of wheat and barley in North America: a retrospective historical review. Annual Reviews of Phytopathology, 40, 75—118. https://doi.org/10.1146/annurev.phyto.40.020102.111645

Duweiller, E., Singh, P. K., Mezza-lama, M., Singh, R. P., Dababat, A. (2018). Wheat diseases and pests: A guide for field identification (2nd Edition). CIMMYT. Mexico: D.F. 160 р. [in Russian].

Babayants, O. V., Babayants, L. T. (2014). Fundamentals of breeding and methodology for assessing wheat resistance to pathogens. Odessa: VMV. 404 p. [in Russian].

Jin, Y. (2010). Role of Berbаris spp. аs alternate hosts in generating new races of Puccinia graminis and P. striiformis. BGRI, Technical Workshop, 138—145. https://doi.org/10.1007/s10681-010-0328-3

Jin, Y., Szado, L. J., Carson, M. (2010). Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology, 100(5), 432—435. https://doi.org/10.1094/PHYTO-100-5-0432

Wang, M. N., Wan, A. M., Chen, X. M. (2015). Barberry as alternate host is important for Puccinia graminis f. sp. Tritici but not for Puccinia striiformis f. sp. tritici in the U.S. Pacific Northwest. Plant Desease, 99(11), 1507—1516. https://doi.org/10.1094/PDIS-12-14-1279-RE

Park, R. (2015, September). Durable rust resistance: from gene, to paddock continent and beyond. Global Rust Initiative (BGRI) (17—20 September 2015, Agenda). URL: https://globalrust.org/page/bgri-2015-agenda (Last accessed: 01.09.2022).

Villareal-Lorus, M. M. A., Lannou, C., Vallavieilli-Pope, C., Neema, C. (2002). Genetic variability in Puccinia striiformis f. sp. tritici populations sampled on a local scale during natural epidemics. Applied and Environmental Microbiology, 68(12), 6138—6145. https://doi.org/10.1128/AEM.68.12.6138-6145.2002

Rizwan, S., Iftikhar, A., Ashraf, M., Ghulam, M. S., Mujeeb-Kazi, A. (2007). New sources of wheat yellow rust (Puccinia striiformis f. tritici) seedling resistance. Pakistan Journal of Botany, 39(2), 595—602.

Ma, L., Qiao, J., Kong, X., Zou, Y., Xu, X., Chen, X., Hu, Х. (2015). Effect of low temperature and wheat winter hardiness on survival of Puccinia striiformis f. sp.tritici under controlled conditions. PLoS ONE 10(6):e0130691, 1—17. https://doi.org/10.1371/journal.pone.0130691

Zhivotkov, L. A., Biryukov, S. V., Stepanenko, O. Ya. (1989). Wheat. (Ed. L. A. Zhivotkov; Comp. A. K. Medvedovsky). Kyiv. 320 p. [in Russian].

Allison, C., Isenbeck, K. (1930). Biologische specialisierung von Puccinia glumarum tritici Erikss. und Henn. Phytopathologische Zeitschrift, 2, 87—98.

Gladders, P., Langton, S. D., Barrie, I. A., Hardwick, N. V., Taylor, M. C., Paveley, N. D. (2007). The importance of weather and agronomic factors for the over winter survival of yellow rust (Puccinia striiformis) and subsequent disease risk in commercial wheat crops in England. Annals of Applied Biology, 150, 371—382. https://doi.org/10.1111/j.1744-7348.2007.00131.x

Johnson, R., Taylor, A. J. (1976). Yellow rust of wheat. Plant Breeding Institute, Cambridge. Annual Report, 106—109.

Wellings, C. R. (2011). Global status of stripe rust: A review of historical and current threats. Euphytica, 179(1), 129—141. https://doi.org/10.1007/s10681-011-0360-y

McDonald, B. A., Linde, C. (2002). Pathogen population genetics, evolutionary potential and durable resistance. Annual Review of Phytopathology, 40, 349—379. https://doi.org/10.1146/annurev.phyto.40.120501.101443

Yevtushenko, M. D., Lisovyi, M. P., Panteleev, V. K., Slisarenko, O. M. (2004). Plant Іmmunity. Kyiv: Koloobih. 304 p. [in Ukrainian].

Borzykh, O. I., Retman, S. V., Kovbasenko, V. M. (2014). Anti-stressor of cereal crops. Quarantine and Рlant Рrotection, 10, 12—13 [in Ukrainian].

Vlasyuk, O. S. (2014). The influence of sowing dates and sowing rates on the phytosanitary condition of winter wheat crops. Quarantine and Рlant Рrotection, 6, 1—4 [in Ukrainian].

Chen, X. M. (2005). Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology, 27, 314—337. https://doi.org/10.1080/07060660509507230

Kumar, K., Holtz, M. D., Xi, K., Turkington, T. K. (2012).Virulence of Puccinia striiformis on wheat and barley in central Alberta. Canadian Journal of Plant Pathology, 34(4), 551—561. https://doi.org/10.1080/07060661.2012.722130

Bueno-Sancho, V., Persoons, A., Hubbard, A., Cabrera-Quio, L. E., Lewis, C. M., Corredor-Moreno, P., …, Saunders, D. G. O. (2017). Pathogenomic analysis of wheat yellow rust lineages detects seasonal variation and host specificity. Genome Biology and Evolution, 9(12), 3282—3296. https://doi.org/10.1093/gbe/evx241.

Shahinnia, F., Geyer, M., Schürmann, F., Rudolphi, S., Holzapfel, J., Kempf, H., …, Hartl, L. (2022). Genome-wide association study and genomic prediction of resistance to stripe rust in current Central and Northern European winter wheat germplasm. Theoretical and Applied Genetics, 135(10), 3583—3595. https://doi.org/10.1007/s00122-022-04202-z.

Naruoka, Y., Garland-Campbell, K. A., Carter, A. H. (2015). Genome-wide association mapping for stripe rust (Puccinia striiformis f. sp. tritici) in US Pacific Northwest winter wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 128(6), 1083—1101. https://doi.org/10.1007/s00122-015-2492-2.

Franco, M. F., Polacco, A. N., Campos, P. E., Pontaroli, A. C., Vanzetti, L. S. (2022). Genome-wide association study for resistance in bread wheat (Triticum aestivum L.) to stripe rust (Puccinia striiformis f. sp. tritici) races in Argentina. BMC Plant Biology, 22(1), 543. https://doi.org/10.1186/s12870-022-03916-y.

Cheng, Y., Li, J., Yao, F., Long, L., Wang, Y., Wu, Y., …, Chen, G. (2019). Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle and lower reaches of the Yangtze River via genome-wide association study. Plant Science, 287, 110204. https://doi.org/10.1016/j.plantsci.2019.110204.

Bouvet, L., Percival-Alwyn, L., Berry, S., Fenwick, P., Mantello, C.C., Sharma, R., Holdgate, S., Mackay, I. J., Cockram, J. (2022). Wheat genetic loci conferring resistance to stripe rust in the face of genetically diverse races of the fungus Puccinia striiformis f. sp. tritici. Theoretical and Applied Genetics, 135(1), 301—319. https://doi.org/10.1007/s00122-021-03967-z

Rubiales, D., Niks, R. E. (1995). Characterization of Lr34 a major gene conferring non hypersensitive resistance to wheat leaf rust. Plant Disease, 94, 1208—1212. https://doi.org/10.1094/PD-79-1208.

Smale, M., Singh, R. P., Sayre, K., Pingali, Р., Rajaram, S., Dubin, H. J. (1998). Estimating the economic impact of breeding non specific resistance to leaf rustin modern bread wheats. Plant Disease, 82(9), 1055—1061. https://doi:10.1094/PDIS.1998.82.9.1055

Kolomiiets, Yu. V., Grygoryuk, I. P., Butsenko, L. M., Yemets, A. I., Blume, Ya. B. (2021). Sodium nitroprusside as a resistance inducer in tomato plants against pathogens of bacterial diseases. Cytology and Genetics, 55(6), 548—557. https://doi.org/10.3103/S0095452721060049

Kolupaev, Yu. E., Kokorev, A. I., Dmitriev, A. P. (2022). Polyamines: participation in cellular signaling and plant adaptation to the action of abiotic stressors. Cytology and Genetics, 56(2), 49—67. https://doi.org/10.3103/S0095452722020062

Shamrai, S. (2022). Recognition of pathogen attacks by plant immune sensors and their initiation of the immune response. Cytology and Genetics, 56(1), 57—71. https://doi.org/10.3103/S0095452722010108

Hovmøller, M. S., Rodriguez-Algaba, J., Thach T., Justesen, A. F., Hansen, J. G. (2017). Report for Puccinia striiformis race analyses and molecular genotyping 2016. Global Rust Reference Center (GRRC), Aarhus University. URL: https://agro.au.dk/fileadmin/Summary_of_Puccinia_striiformis_race_analysis_2016.pdf (Last accessed: 12.09.2022).

Hovmøller, M. S., Rodriguez-Algaba, J., Thach T., Justesen, A. F., Hansen, J. G. (2018). Report for Puccinia striiformis race analyses and molecular genotyping 2017. Global Rust Reference Center (GRRC), Aarhus University. URL: https://agro.au.dk/fileadmin/Summary_of_Puccinia_striiformis_race_analysis_2017.pdf (Last accessed: 13.09.2022).

Hovmøller, M. S., Rodriguez-Algaba, J., Thach T., Justesen, A. F., Hansen, J. G. (2019). Report for Puccinia striiformis race analyses/molecular genotyping. Global Rust Reference Center (GRRC), Aarhus University. URL: https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/Summary_of_Puccinia_striiformis_molecular_genotyping_2018.pdf (Last accessed: 13.09.2022).

Hovmøller, M. S., Patpour, M., Rodriguez-Algaba, J., Thach T., Justesen, A. F., Hansen, J. G. (2020). GRRC annual report 2019: Stem- and yellow rust genotyping and race analyses. Global Rust Reference Center (GRRC), Aarhus University. URL: https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/GRRC_annual_report_2019.pdf (Last accessed: 14.09.2022).

Hovmøller, M. S., Patpour, M., Rodriguez-Algaba, J., Thach T., Justesen, A. F., Hansen, J. G. (2021). GRRC report of yellow and stem rust genotyping and race analyses 2020. Global Rust Reference Center (GRRC), Aarhus University. URL: https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/GRRC_annual_report_2020.pdf (Last accessed: 14.09.2022).

Hovmøller, M. S., Patpour, M., Rodriguez-Algaba, J., Thach, T., Sørensen, C. K., Justesen, A. F., Hansen, J. G. (2022). GRRC report of yellow and stem rust genotyping and race analyses 2021. Global Rust Reference Center (GRRC), Aarhus University. URL: https://agro.au.dk/fileadmin/www.grcc.au.dk/International_Services/Pathotype_YR_results/GRRC_Annual_Report2021.pdf (Last accessed: 14.09.2022).

Babayants, L. T., Babayants, O. V., Vasilyev, A. A. (2005). Yellow rust Puccinia striiformis f. sp. tritici in the south of Ukraine, it race composition and varietal resistance of wheat. Мateriale Conferentei Nationale (julilata) cu Participare. Internationale Probleme Actuale ale Geneticii/Biotechnology ici si Amenorarli. Chisinau, 216–217 [in Russian].

Nargan, T. P. (2015). Identification of sources of resistance to foliar diseases of soft winter wheat for use in breeding. Plant Genetic Resources, 17, 11—20 [in Ukrainian].

Motsny, I. I., Molodchenkova, O. O., Smertenko, A. P., Lytvynenko, M. A., Golub, E. A., Mishchenko, L. T. (2020). Creation of introgressive lines of soft winter wheat with signs of resistance to phytopathogens. Bulletin of Odessa National University. Biology, 25, 2(47), 59—82. https://doi.org/10.18524/2077-1746.2020.2(47).218058 [in Ukrainian].

Koishibaev, M. (2018). Diseases of wheat. Ankara: FAO. 365 р. URL: http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10042659.pdf (Last accessed: 14.09.2022) [in Russian].

Kokhmetova, A., Chen, X., Rsaliyev, S. (2010). Identification of Puccinia striiformis f.sp. tritici. Characterization of wheat cultivars for resistance, and inheritance of resistance to stripe rustin Kazakhstan wheat cultivars. Asian and Australasian Journal of Plant Science and Biotechnology, 4(1), 64—70.

Ziyaev, Z. M., Sharma, R. C., Nazari, K., Morgounov, A. I., Amanov, A. A., Ziyadullaev, Z. F., Khalikulov, Z. I., Alikulov, S. M. (2011). Improving wheat stripe rust resistance in Central Asia and the Caucasus. Euphytica, 179, 197—207. https://doi.org/10.1007/s10681-010-0305-x

Solh, M., Nazari, K., Tadess, W., Wellings, C.R. (2012, September). The growing threat of stripe rust worldwide. BGRI, Technical Workshop (1—4 September 2012, Beijing, China), 1—10.

Wang, M. N., Chen, X. M. (2013). First report of Oregon grape (Mahonia aquifolium) as an alternate host for thewheat stripe rust pathogen (Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Disease, 97(6), 839. https://doi.org/10.1094/PDIS-09-12-0864-PDN

Wellings, C. R., McIntosh, R. A. (1990). Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathology, 39(2), 316—325. https://doi.org/10.1111/j.1365-3059.1990.tb02509.x

Wellings, C. R. (2007). Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptationof stripe rust in the period 1979—2006. Australian Journal of Agricultural Research, 58(6), 567—575. https://doi.org/10.1071/AR07130

Beresford, R. M. (1982). Stripe Rust (Pussinia striformis), a new disease of wheat in New Zealand. Cereal Rusts Bulletin, 10(2), 35—41.

Sharma-Poudyal, D., Chen, X. M., Rupp, R. A. (2014). Potential over summering and overwintering regions for the wheat stripe rust pathogen in the contiguous United States. International Journal of Biometeorology, 58(5), 987—997. https://doi.org/10.1007/s00484-013-0683-6

Line, R. F., Qayoum, A. (1992). Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968—87. United States Department of Agriculture, Technical Bulletin, 1788, 44 р.

Topchii, T., Morgun, B. (2019). Wheat yellow rust. Propozicіya, 1. URL: https://propozitsiya.com/ua/zhovta-irzha-pshenyci (Last accessed: 08.08.2022) [in Ukrainian].

Wheat crops are threatened by rust diseases. URL: https://agrotimes.ua/agronomiya/posivam-pshenyczi-zagrozhuyutirzhasti-hvoroby/ (Last accessed: 09.09.2022) [in Ukrainian].

Phytosanitary status of agricultural plants. URL: https://minagro.gov.ua/napryamki/roslinnictvo/pidgotovka-i-provedennyavesnyano-polovih-robit/pidgotovka-do-provedennya-polovih-robit/fitosanitarni-stan-silskogospodarskih-roslin (Last accessed: 09.09.2022) [in Ukrainian].

Plant pests and diseases in the context of climate change and climate variability, food security and biodiversity risks (2019). 41st session of the European Commission on Agriculture (1—2 Oktober 2019, Budapest, Hungary). 16 p. URL: https://www.fao.org/3/nb088ru/nb088ru.pdf (Last accessed: 30.09.2022) [in Russian].

Galaev, A. V., Sivolap, Yu. M. (2015). Description of the bread wheat varieties of Ukrainian and Russian breeding by alleles of locus csLV34 closely linked with multipathogen resistance gene Lr34/Yr18/Pm38. Cytology and Genetics, 49(1), 12—18. https://doi.org/10.3103/S0095452715010041

Galaev, O. V., Babayants, L. T. (2015). Molecular genetic markers for the identification of genes of resistance to fungal diseases of common wheat (Triticum aestivum L.). Collection of scientific works of the Institute of Breeding and Genetics — National Center for Seed Science and Variety Research, 25(65), 61—75 [in Ukrainian].

Galaev, O. V. (2021). Genetic polymorphism of winter wheat varieties of SHI-NCNS selection by Yr genes. Breeding of Grain and Leguminous Crops in Conditions of Climate change: Directions and Priorities: Abstracts of Reports of the International Scientific Conference (May 5, 2021, SGI-NCNS, Odesa, Ukraine). Odesa: SGI-NCNS, 81—83 [in Ukrainian].

Babayants, L. T., Chusovitina, N. M. (2011). Varietal resistance of winter soft wheat to yellow rust pathogen Puccinia striiformis f. sp. tritici in the south of Ukraine. Bulletin of the Institute of Grain Management, 40, 94—97 [in Ukrainian].

State Register of Plant Varieties Suitable for Distribution in Ukraine. URL: https://minagro.gov.ua/file-storage/reyestrsortiv-roslin (Last accessed: 01.08.2022) [in Ukrainian].

Hovmøller, M. S., Walter, S., Bayles, R. A., Hubbard, A., Flath, K., Sommerfeldt, N., Leconte, M., Czembor, P., Rodriguez-Algaba, J., Thach, T., Hansen, J. G., Lassen, P., Justesen, A. F., Ali, S., de Vallavieille-Pope, C. (2016). Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathology, 65(3), 402—411. https://doi.org/10.1111/ppa.12433

Pirko, Y. V., Karelov, A. V., Ivashchuk, B. V., Kozub, N. O., Sozinov, I. O., Sozinov, O. O., Blumе, Y. B. (2013) Detection of fungal disease resistance genes in common wheat and barley varieties of Ukrainian selection. Materials of the Interna tional Conference “Plant genomics and biotechnology” and the Second Conference of Young Scientists “Plant biology and biotechnology” (3—24 December, 2013). Kyiv. 22 [in Ukrainian].

Kokhmetova, A., Rsaliyev, A., Malysheva, A., Atishova, M., Kumarbayeva, M., Keishilov, Z. (2021). Identification of stripe rust resistance genes in common wheat cultivars and breeding lines from Kazakhstan. Plants, 10(11), 2303. https://doi.org/10.3390/plants10112303

Brandt, K. M., Chen, X., Tabima, J. F., See, D. R., Vining, K. J., Zemetra, R. S. (2021). QTL analysis of adult plant resistance to stripe rust in a winter wheat recombinant inbred population. Plants, 10(3), 572. https://doi.org/10.3390/plants10030572

Bai, B., Li, Z., Wang, H., Du, X., Wu, L., Du, J., Lan, C. (2022). Genetic analysis of adult plant resistance to stripe rust in common wheat cultivar “Pascal”. Frontiers in Plant Science, 13, 918437. https://doi.org/10.3389/fpls.2022.918437

Pirko, Ya. V., Karelov, A. V., Kozub, N. O., Ivashchuk, B. V., Sozinov, I. A., Topchii, T. V., Morgun, V. V., Blume, Ya. B. (2021). Identification of resistance genes to yellow rust of Asian origin in winter wheat varieties and lines. Cytology and Genetics, 55(3), 227—235. https://doi.org/10.3103/S0095452721030075.

Zhang, Y., Zhang, G., Xia, N., Wang, X.-J., Huang, L.-L., Kang, Z.-S. (2008). Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stripe rust pathogen infection and abiotic stresses. Physiological and Molecular Plant Pathology, 73(4—5), 88—94. https://doi.org/10.1016/j.pmpp.2009.02.002

Dong, Y. L., Yin, C. T., Hulbert, S., Chen, X.-M., Kang, Z.-S. (2011). Cloning and expression analysis of three secreted protein genes from wheat stripe rust fungus Puccinia striiformis f. sp. tritici. World Journal of Microbiology and Biotechnology, 27(5), 1261—1265. https://doi.org/10.1007/s11274-010-0565-6

Liu, B., Xue, X., Cui, S., Zhang, X., Han, Q., Zhu, L., Liang, X., Wang, X., Huang, L., Chen, X., Kang, Z. (2010). Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Molecular Biology Reports , 37(2), 1045—1052. https://doi.org/10.1007/s11033-009-9823-9

Ma, J., Zhou, R., Dong, Y., Wang, L., Xiaoming, W., Jia, J. (2001). Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 120(2), 219—226. https://doi.org/10.1023/A:1017510331721

Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X., He, Z. H. (2013). Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics, 126(10), 2427—2449. https://doi.org/10.1007/s00122-013-2159-9

Cheng, P., Chen, X. M. (2010). Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theoretical and Applied Genetics, 121(1), 195—204. https://doi.org/10.1007/s00122-010-1302-0

Herrera-Foessel, S. A., Singh, R. P., Lillemo, M., Huerta-Espino, J., Bhavani, S., Singh, S., Lan, C., Calvo-Salazar, V., Lagudah, E. S. (2014). Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 127(4), 781—789. https://doi.org/10.1007/s00122-013-2256-9

Lowe, I., Jankuloski, L., Chao, S. M., Chen, X. M., See, D., Dubcovsky, J. (2011). Mapping and validation of QTL that confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theoretical and Applied Genetics, 123(1), 143—157. https://doi.org/10.1007/s00122-011-1573-0




How to Cite

Chugunkova, T., Pastukhova, N., Topchii, T., Pirko, Y., & Blume, Y. (2023). HARMFULNESS OF WHEAT YELLOW RUST AND IDENTIFICATION OF RESISTANCE GENES TO ITS HIGHLY VIRULENT RACES. Science and Innovation, 19(4), 66–78. https://doi.org/10.15407/scine19.04.066



Scientific and Technical Innovation Projects of the National Academy of Sciences