Design and Manufacture of Scintillator-PMT Type Detectors Based on ZnSe(Al) and UPS-923A Plastic Scintillator for α-, β- and Mixed α-β-Radiation Devices




alpha-beta radiation, detector, scintillator, zinc selenide, polystyrene, and polymethyl methacrylate


Introduction. The search for technical solutions for the creation of effective α- and β- radiation detectors is a global trend in the field of radiation monitoring.
Problem Statement. The characteristics of α- and β-particle detectors can be improved by using materials with optimized parameters, original designs and technology.
Purpose. The purpose of this research is to develop and create a technology framework for manufacturing scintillation detectors based on activated zinc selenide ZnSe(Al) and plastic scintillator (PS) of UPS-923A type polystyrene for registration of α-, β- and α-β-radiations.
Material and Methods. ZnSe(Al) crystal, PS based on UPS-923A polystyrene, polymethyl methacrylate (PMMA) have been used; the hot pressing method; the detector parameters under irradiation with α- and β-particles have been tested with the use of the spectrometry and spectrophotometry methods.
Results. The following process techniques have been elaborated: for manufacturing the α-detector based on a thin layer of ZnSe(Al) fine-crystalline scintillator applied to a PMMA plate, which operates in the counting mode of registration (sensitivity > 0.15 pulse per sec/Bq (pps/Bq) (239Pu)); for manufacturing the PS plates of UPS923A polystyrene with a given thickness and area by the hot pressing method and the β-detectors based on them, which operate in the counting mode of registration (sensitivity > 0.28 imp · s–1/Bq (90Sr-90Y)); for manufacturing the α-β-detector based on a thin layer of fine-crystalline ZnSe(Al) applied to PS plate of UPS-923A polystyrene, which operate in the counting mode of registration (sensitivity > 0.15 pps/Bq (239Pu) and > 0.28 pps/Bq (90Sr-90Y)); for manufacturing the α-β-detector with the use of a thin monocrystalline plate of ZnSe(Al) scintillator optically connected to a PMMA plate, which operates in the spectrometric mode of registration (the detector simultaneously registers α- and β-particles with spectrum separation, α/β ratio > 0.85, sensitivity > 0.3 pps/Bq (239Pu), and > 0.28 pps/Bq (90Sr-90Y)).
Conclusions. The developed detectors are as good as the world analogs and provide signal registration in both counting and spectrometric modes.


Download data is not yet available.


ZnS(Ag) Zinc Sulfide Scintillation Material. © 2002 Saint-Gobain Ceramics and Plastics, Inc. URL: http://www.hep. (Last accessed: 01.11.2022).

Patent of USA № US7679064B2. Particle detector and neutron detector that use zinc sulfide phosphors. Katagiri M. URL: (Last accessed: 01.11.2022).

Lee, S. K., Kang, S. Ya., Jang, D. Yu., Lee, Ch. H., Kang, S. M., …, Kim, Y. K. (2011). Comparison of new simple methods in fabricating ZnS(Ag) scintillators for detecting alpha particles. Progress in Nuclear Science and Technology, 1, 194—197.

Morozova, N. K., Kuznetsov, V. A. (1987). Zinc sulfide: preparation and optical properties (Eds. M. V. Fok). Moscow [in Russian].

Foster, J. (2006). A comparison of the ZnS(Ag) scintillation detector to the silicon semiconductor detector for quantification of alpha radioactivity in aqueous solutions. All Theses. Clemson University: TigerPrints. URL: (Last accessed: 01.11.2022).

Nikl, M. (2006). Scintillation detectors for X-rays. Meas. Sci. Technol., 17(4), 37—54. 17/4/R01.

Ryzhikov, V., Starzhinskiy, N., Galchinetskii, L., Gashin, P., Kozin, D., Danshin, E. (2001). New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon. IEEE T. Nucl. Sci., 48(3), 356—359. 10.1109/23.940080.

Ryzhikov, V., Starzhinskiy, N. (2005). Properties and peculiar features of application of isoelectronically doped A2 B6 compound-based scintillators. Journal of Radiation Protection and Research, 30(2), 77—84. URL: upload/pdf/BSBOB5_2005_v30n2_77.pdf (Last accessed: 01.11.2022).

Lee, W. G., Kim, Y. K., Kim, J. K., Seo, H. J., Ryzhikov, V., Starzhinskiy, N., …, Zelenskaya, O. (2006). Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. Journal of the Korean Physical Society, 48(1), 47—50. URL: (Last accessed: 01.11.2022).

Ryzhikov, V. D., Galchinetskii, L. P., Starzhinskiy, N. G., Danshin, E. A., Katrunov, K. A., Chernikov, V. V. (2001). Combined detectors of charged particles based on zinc selenide scintillators and silicon photodiodes. Problems of Atomic Science and Technology. Nuclear Physics Investigations, 5, 174—176. URL: 2001_5/article_2001_5_174.pdf (Last accessed: 01.11.2022).

Ryzhikov, V., Grinyov, B., Galkin, S., Starzhinskiy, N., Rybalka, I. (2013). Growing technology and luminescent characteristics of ZnSe doped crystals. J. Cryst. Growth, 364, 111—117.

Galkin, S. M., Rybalka, I. A., Tupitsyna, I. A., Zvereva, V. S., Litichevskiy, V. A. (2016). The development of flexible scintillation panels based on chalcogenide and oxide phosphors for advanced X-ray scanners and tomographs. Sci. Innov., 12(6), 37—45.

van Eijk, Carel W. E. (2002). Neutron PSDs for the next generation of spallation neutron sources. Nuclear Instruments and Methods in Physics Research A, 477, 383—390.

Beeman, J. W., Bellini, F., Cardani, L., Casali, N., Dafinei, I., Di Domizio, S., ..., Vignati, M. (2013). Performances of a large mass ZnSe bolometer to search for rare events. Journal of Instrumentation, 8, P05021. 0221/8/05/P05021.

Nagorny, S., Cardani, L., Casali, N., Dafinei, I., Pagnanini, L., Pattavina, L., …, Schaeffner, K. (2017). Quenching factor for alpha particles in ZnSe scintillating bolometers. IOP Conf. Series: Materials Science and Engineering, 169, 012011. https://

Arnaboldi, C., Capelli, S., Cremonesi, O., Gironi, L., Pavan, M., Pessina, G., Pirro, S. (2011). Characterization of ZnSe scintillating bolometers for Double Beta Decay. Astroparticle Physics, 34(6), 344—353.

Maekawa, T., Sumita, A., Makino, Sh. (1998). Thin beta-ray detectors using plastic scintillator combined with wavelength-shifting fibers for surface contamination monitoring. Journal of Nuclear Science and Technology, 35(12), 886—894.

Miramonti, L. (2002). A plastic scintillator detector for beta particles. Radiation Measurements, 35(4), 347—354.

Pourtangestani, K., Machrafi, R. (2012). Optimization of plastic scintillator thicknesses for online beta/gamma detection. EPJ Web of Conferences, 24, 07010.

Bae, J. W., Kim, H. R. (2020). Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil. Nuclear Engineering and Technology, 52(6), 1259—1265.

Grinyov, B. V., Senchishin, V. G. (2003). Plastic scintillators. Kharkov [in Russian].

Patent of Ukraine № UA103711C2. Voronkin, Ye. F., Galkin, S. M., Lalaiants, O. I., Litichevskyi, V. O., Tarasov, V. O. Method for production of a scintillation element for registration of alpha-radiation [in Ukrainian]. URL: https://patents. (Last accessed: 01.11.2022).

Alpha Detection EJ-440, EJ-442. © 2021 Eljen Technology. URL: (Last accessed: 01.11.2022).

Alpha Detector Model 43-1. © 2022 Ludlum Measurements, Inc. URL: product/model-43-1 (Last accessed: 01.11.2022).

Patent of USA № US7375336B2. Hasegawa, I., Izaki, K., Kobayashi, H., Ino, K., Kanazawa, N. ZnS(Ag) scintillation detector. URL: (Last accessed: 01.11.2022).

Patent of Ukraine № UA125108C2. Boiaryntsev, A. Yu., Nepokupna, T. A., Galkin, S. M., Sibilieva, T. H. Scintillation coating for alpha detector [in Ukrainian]. URL: (Last accessed: 01.11.2022).

AT1329 sample counter. © 2023 ATOMTEX. URL: (Last accessed: 14.04.2023).

Kumar, A., Waker, A. J. (2012). An experimental study of the relative response of plastic scintillators to photons and beta particles. Radiation Measurements, 47(10), 930—935.

Reeder, P. L., Peurrung, A. J., Hansen, R. R., Stromswold, D. C., Hensley, W. K., Hubbard, C. W. (1999). Detection of fast neutrons in a plastic scintillator using digital pulse processing to reject gammas. Nuclear Instruments and Methods in Physics Research A, 422, 84—88.

Alpha/Beta Detection EJ-444. © 2021 Eljen Technology. URL: (Last accessed: 01.11.2022).

Alpha-Beta Detector Model 43-1-1. © 2022 Ludlum Measurements, Inc. URL: (Last accessed: 01.11.2022).

Alpha and beta radiation detector BDPS-96. © 1995-2022 «SPE «TETRA» Ltd. Devices of radiation and technological control. URL: (Last accessed: 01.11.2022).

Ryzhikov, V., Galchinetski, L., Galkin, S., Danshin, E., …, Chernikov, V. (2000). Combined detectors based on ZnSe(Te), CsI(Tl) and Si-PIN-PD for separate detection of alpha, beta and gamma radiation. IEEE Transactions on Nuclear Science, 47(6), 1979—1981.




How to Cite

BOYARINTSEV, A., NEPOKUPNA, T., RYBALKA, I., GALKIN, S., KOVALCHUK, S., SIBILIEVA, T., & KOLESNIKOV, O. (2023). Design and Manufacture of Scintillator-PMT Type Detectors Based on ZnSe(Al) and UPS-923A Plastic Scintillator for α-, β- and Mixed α-β-Radiation Devices. Science and Innovation, 19(5), 57–70.



Scientific and Technical Innovation Projects of the National Academy of Sciences