Development of an Optical Temperature Sensor on Liquid Crystals

Authors

DOI:

https://doi.org/10.15407/scine19.05.034

Keywords:

industrial sensors, optical temperature sensors, liquid crystals, phase transitions

Abstract

Introduction. High-tech production requires careful control of the technological process, the operation of factory equipment, as well as the parameters of work premises, which have to meet the criteria of safety and comfort of employees. For this, there are used sensors of physical parameters, including temperature.
Problem Statement. Inside industrial premises and near factory equipment, special temperature sensors that are not affected by various technological factors, such as high concentration of dust, aerosols of chemical substances, and high noise, shall be employed.
Purpose. The purpose of the research is to illustrate the possibility of creating an optical temperature sensor on liquid crystals, which reliably operates in the conditions of high-tech industrial production.
Material and Methods. Analytical review of scholarly research publications. Experiment, numerical analysis of experimental data.
Results. A design of optical threshold temperature sensor has been proposed. The sensor comprises an optical radiation source that is connected to the input optical pole of the optical switch. The sensor is capable of fixing a number of threshold temperatures that correspond to the phase transition temperatures of each temperaturesensitive element. Composites based on a liquid crystal 6CB doped with magnetic Fe3O4 nanoparticles have been used as heat-sensitive elements. The phase transition temperature of these composites varies from 22 to 29 °C depending on the concentration and size of the Fe3O4 nanoparticles. Due to it, the sensor is able to record threshold temperatures in the range of 22—29 °C with an accuracy of 0.05 °C.
Conclusions. The design of temperature sensor on liquid crystals, which can be used in manufacturing enterprises, in particular, in modern battery production for monitoring temperature conditions inside industrial premises and near technological equipment has been proposed.

Downloads

Download data is not yet available.

References

Sensors: A Reference Guide. (2012). (Eds. V. M. Sharapova, E. S. Polishchuk). Moscow [in Russian].

Humen, O., Martin, E., Spodynyuk, N., Lyaskovskaya, S. (2017). Information graphic means of representing the space of the temperature field of industrial buildings. Bulletin of KhNTU. Applied geometry and computer technology, 62(3), 269- 273 [in Ukrainian].

Patent of Ukraine № 131737. System of measurement and accounting of individual consumed heat in multi-storey buildings. Prisyazhnyuk V. V., Koval V. S. [in Ukrainian].

Rybak, V., Sklyarenko, S., Strokach, A. (2007). A device based on a pyroelectric receiver of infrared radiation for remote measurement of the temperature of axleboxes of rail vehicles in the process of movement. Science and innovation, 3(2), 34-46 [in Russian]. https://doi.org/10.15407/scin3.02.034

Liquid crystal thermometers. I.P.S. URL: https://ips-promotional.com/en/products/liquid-crystal-thermometers.html (Last accessed: 27.05.2023).

Gavrichev, V., Dmitriev, A. (2012). Fiber optic threshold temperature sensor. Optical instrumentation and technology, 79 (7), 24-28 [in Russian]. https://doi.org/10.1364/JOT.79.000399

Kleman, M., Lavrentovich, O. D. (Eds.). (2003). Soft matter physics: an introduction. New York.

https://doi.org/10.1007/b97416

Gricenko, М. І. (2012). Physics of liquid crystals. Kyiv [in Ukrainian].

Visjtak, М. (2014). Modification of cholesteric liquid crystals with active nano-admixtures for elements of electronic equipment. Lviv [in Ukrainian].

Reinitzer, F. (1888). Beiträge zur Kenntniss des Cholesterins. Monatshefte für Chemie, 9(1), 421-441. https://doi.org/10.1007/BF01516710

Lisetski, L. (2010). What was observed by Julius Planer in 1861? Condensed Matter. Physics, 13(3), 33604, 1-4. URL: http://dspace.nbuv.gov.ua/handle/123456789/32109 (Last accessed: 27.05.2023). https://doi.org/10.5488/CMP.13.33604

Trokhymchuk, A. (2010). On Julius Planer's 1861 paper «Notiz über das Cholestearin. Іn Annalen der Chemie und Pharmacie». Condensed Matter. Physics, 13(3), 37002, 1-4. URL: http://dspace.nbuv.gov.ua/handle/123456789/32113 (Last accessed: 27.05.2023).

https://doi.org/10.5488/CMP.13.37002

Shenderovskyi, V. A., Trokhymchuk, A. D., Lisetski, L. N., Kozhushko, B. V., Gvozdovskyy, I. A. (2018). Julius Planer. A pioneer in the study of liquid crystals. Journal of Molecular Liquids, 267, 560-563. https://doi.org/10.1016/j.molliq.2018.01.070

Planer, J. (1861). Mittheilungen aus dem Universitätslaboratorium in Lemberg., Annalen der Chemie und Pharmacie (Annals of Chemistry and Pharmacy). Band CXVIII, Bandes erstes Heft, 1, 25-27.

Planer, J. (2010). Note about Cholesterol. Condensed Matter Physics, 13(3), 33601, 1-2. URI: http://dspace.nbuv.gov. ua/handle/123456789/32112 (Last accessed: 27.05.2023).

https://doi.org/10.5488/CMP.13.37001

Lehmann, O. (1889). Über fliessende Krystalle. Zeitschrift für Physikalische Chemie, 4, 462-72.

https://doi.org/10.1515/zpch-1889-0434

Brochard, F., Gennes, de P. G. (1970). Theory of magnetic suspensions in liquid crystals. J. Phys. (France), 31, 691-708. https://doi.org/10.1051/jphys:01970003107069100

Liebert, L., Martinet, A. (1980). Ferronematic lyotropic. IEEE Transactions on Magnetics, 16(2), 266-269. https://doi.org/10.1109/TMAG.1980.1060607

Chen, S. H., Amer, N. M. (1983). Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals. Physical review letters, 51(25), 2298-2301.

https://doi.org/10.1103/PhysRevLett.51.2298

Liebert, L., Neto, A. F. (1984).Optical microscopic observation of depletion layers, in a calamitic ferronematic lyomesophase. Journal de Physique Lettres, 45(4), 173-178.

https://doi.org/10.1051/jphyslet:01984004504017300

Chen, S. H., Chiang, S. H. (1987).The magnetic-field-induced birefringence of the mixtures of the chiral molecules and the ferronematic liquid crystals. Molecular Crystals and Liquid Crystals, 144(5), 359-370. https://doi.org/10.1080/15421408708084229

Burylov, S. V., Raikher, Y. L. (1995). Macroscopic properties of ferronematics caused by orientational interaction on particle surfaces. I. Extended continuum model. Molecular Crystals and Liquid Crystals, 258, 107-122. https://doi.org/10.1080/10587259508034552

Burylov, S. V., Zadorozhnii, V. I., Pinkevich, I. P., Reshetnyak, V. Y., Sluckin, T. J. (2002). Magnetic field induced orientational bistability in a ferronematic cell. Molecular Crystals and Liquid Crystals, 375(1), 525-534. https://doi.org/10.1080/10587250210569

Garbovskiy, Yu. A., Glushchenko, A. V. (2010). Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. Solid State Physics, 62, 1-74. https://doi.org/10.1016/B978-0-12-374293-3.00001-8

Kredentser, S., Buluy, O., Davidson, P., Dozov, I., Malynych, S., …, Reznikov, Yu. (2013). Strong orientational coupling in twocomponent suspensions of rod-like nanoparticles. Soft Matter., 9(20), 5061-5066. https://doi.org/10.1039/c3sm27881f

Chernyshuk, S. B., Lev, B. I. (2010). Elastic interaction between colloidal particles in confined nematic liquid crystals. Physical Review E., 81(4), 041701. https://doi.org/10.1103/PhysRevE.81.041701

Burylov, S. V., Zakhlevnych, A. N. (2013). Orientational energy of anisometric particles in liquid-crystalline suspensions. Physical Review E., 88, 012511. https://doi.org/10.1103/PhysRevE.88.012511

Gdovinova, V., Tomašovicová, N., Éber, N., Tóth-Katona, T., …, Kopčanský, P. (2014). Influence of the anisometry of magnetic nanoparticles on the isotropic-nematic phase transition. Liquid Crystals, 41, 1773-1777. https://doi.org/10.1080/02678292.2014.950615

Prodanov, M. F., Buluy, O. G., Popova, E. V., Gamzaeva, S. A., Reznikov, Yu. O., Vashchenko, V. V. (2016). Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal. Soft Matter., 12, 6601. https://doi.org/10.1039/C6SM00906A

Smalyukh, I. I. (2018). Liquid crystal colloids. Annual Review of Condensed Matter Physics, 9, 207-226. https://doi.org/10.1146/annurev-conmatphys-033117-054102

Burylov, S., Petrov, D., Lacková, V., Zakutanská, K., …, Tomašovičová, N. (2021). Ferromagnetic and antiferromagnetic li quid crystal suspensions: Experiment and theory. Journal of Molecular Liquids, 321, 114467. https://doi.org/10.1016/j.molliq.2020.114467

Gоtra, Z. Yu., Zelinskiy, R. Ya., Mikitjuk, Z. М., Sorokin, V. М., Sushinsjkiy, О. E., Fechan, А. V. (2010). Liquid crystal electronics. Lviv [in Ukrainian].

Rao, Yu., Yamin, Xu. (2012). Liquid crystal thermography measurement uncertainty analysis and its application to turbulent heat transfer measurements. Advances in condensed matter physics, 898104.

https://doi.org/10.1155/2012/898104

Patent of Ukraine № 94082. The method of manufacturing the primary transducer of the fiber optic temperature sensor. Gоtra Z. Yu., Mikitjuk Z. М., Fechan А.V., Sushinsjkiy О. E., …, Turik, P. М. [in Ukrainian].

Patent of Russian Federation № 2253902. Fire alarm sensor. Tolstunov S. A., Moser S. P. [in Russian].

Zakutanská, K., Lacková, V., Tomašovičová, N., Burylov, S., … Kopčanský, P. (2019). Nanoparticle's size, surfactant and concentration effects on stability and isotropic-nematic transition in ferronematic liquid crystal. Journal of Molecular Li quids, 289, 111125. https://doi.org/10.1016/j.molliq.2019.111125

Patent of Ukraine № 143003. Optical temperature sensor on liquid crystals. Burylov S. V., Burylova N. V., Skosar V. Yu. [in Ukrainian].

Downloads

Published

2023-10-20

How to Cite

SKOSAR, V., BURYLOVA, N., VOROSHILOV, O., & BURYLOV, S. (2023). Development of an Optical Temperature Sensor on Liquid Crystals. Science and Innovation, 19(5), 34–42. https://doi.org/10.15407/scine19.05.034

Issue

Section

Scientific and Technical Innovation Projects of the National Academy of Sciences