Development of an Optical Temperature Sensor on Liquid Crystals
DOI:
https://doi.org/10.15407/scine19.05.034Keywords:
industrial sensors, optical temperature sensors, liquid crystals, phase transitionsAbstract
Introduction. High-tech production requires careful control of the technological process, the operation of factory equipment, as well as the parameters of work premises, which have to meet the criteria of safety and comfort of employees. For this, there are used sensors of physical parameters, including temperature.
Problem Statement. Inside industrial premises and near factory equipment, special temperature sensors that are not affected by various technological factors, such as high concentration of dust, aerosols of chemical substances, and high noise, shall be employed.
Purpose. The purpose of the research is to illustrate the possibility of creating an optical temperature sensor on liquid crystals, which reliably operates in the conditions of high-tech industrial production.
Material and Methods. Analytical review of scholarly research publications. Experiment, numerical analysis of experimental data.
Results. A design of optical threshold temperature sensor has been proposed. The sensor comprises an optical radiation source that is connected to the input optical pole of the optical switch. The sensor is capable of fixing a number of threshold temperatures that correspond to the phase transition temperatures of each temperaturesensitive element. Composites based on a liquid crystal 6CB doped with magnetic Fe3O4 nanoparticles have been used as heat-sensitive elements. The phase transition temperature of these composites varies from 22 to 29 °C depending on the concentration and size of the Fe3O4 nanoparticles. Due to it, the sensor is able to record threshold temperatures in the range of 22—29 °C with an accuracy of 0.05 °C.
Conclusions. The design of temperature sensor on liquid crystals, which can be used in manufacturing enterprises, in particular, in modern battery production for monitoring temperature conditions inside industrial premises and near technological equipment has been proposed.
Downloads
References
Sensors: A Reference Guide. (2012). (Eds. V. M. Sharapova, E. S. Polishchuk). Moscow [in Russian].
Humen, O., Martin, E., Spodynyuk, N., Lyaskovskaya, S. (2017). Information graphic means of representing the space of the temperature field of industrial buildings. Bulletin of KhNTU. Applied geometry and computer technology, 62(3), 269- 273 [in Ukrainian].
Patent of Ukraine № 131737. System of measurement and accounting of individual consumed heat in multi-storey buildings. Prisyazhnyuk V. V., Koval V. S. [in Ukrainian].
Rybak, V., Sklyarenko, S., Strokach, A. (2007). A device based on a pyroelectric receiver of infrared radiation for remote measurement of the temperature of axleboxes of rail vehicles in the process of movement. Science and innovation, 3(2), 34-46 [in Russian]. https://doi.org/10.15407/scin3.02.034
Liquid crystal thermometers. I.P.S. URL: https://ips-promotional.com/en/products/liquid-crystal-thermometers.html (Last accessed: 27.05.2023).
Gavrichev, V., Dmitriev, A. (2012). Fiber optic threshold temperature sensor. Optical instrumentation and technology, 79 (7), 24-28 [in Russian]. https://doi.org/10.1364/JOT.79.000399
Kleman, M., Lavrentovich, O. D. (Eds.). (2003). Soft matter physics: an introduction. New York.
https://doi.org/10.1007/b97416
Gricenko, М. І. (2012). Physics of liquid crystals. Kyiv [in Ukrainian].
Visjtak, М. (2014). Modification of cholesteric liquid crystals with active nano-admixtures for elements of electronic equipment. Lviv [in Ukrainian].
Reinitzer, F. (1888). Beiträge zur Kenntniss des Cholesterins. Monatshefte für Chemie, 9(1), 421-441. https://doi.org/10.1007/BF01516710
Lisetski, L. (2010). What was observed by Julius Planer in 1861? Condensed Matter. Physics, 13(3), 33604, 1-4. URL: http://dspace.nbuv.gov.ua/handle/123456789/32109 (Last accessed: 27.05.2023). https://doi.org/10.5488/CMP.13.33604
Trokhymchuk, A. (2010). On Julius Planer's 1861 paper «Notiz über das Cholestearin. Іn Annalen der Chemie und Pharmacie». Condensed Matter. Physics, 13(3), 37002, 1-4. URL: http://dspace.nbuv.gov.ua/handle/123456789/32113 (Last accessed: 27.05.2023).
https://doi.org/10.5488/CMP.13.37002
Shenderovskyi, V. A., Trokhymchuk, A. D., Lisetski, L. N., Kozhushko, B. V., Gvozdovskyy, I. A. (2018). Julius Planer. A pioneer in the study of liquid crystals. Journal of Molecular Liquids, 267, 560-563. https://doi.org/10.1016/j.molliq.2018.01.070
Planer, J. (1861). Mittheilungen aus dem Universitätslaboratorium in Lemberg., Annalen der Chemie und Pharmacie (Annals of Chemistry and Pharmacy). Band CXVIII, Bandes erstes Heft, 1, 25-27.
Planer, J. (2010). Note about Cholesterol. Condensed Matter Physics, 13(3), 33601, 1-2. URI: http://dspace.nbuv.gov. ua/handle/123456789/32112 (Last accessed: 27.05.2023).
https://doi.org/10.5488/CMP.13.37001
Lehmann, O. (1889). Über fliessende Krystalle. Zeitschrift für Physikalische Chemie, 4, 462-72.
https://doi.org/10.1515/zpch-1889-0434
Brochard, F., Gennes, de P. G. (1970). Theory of magnetic suspensions in liquid crystals. J. Phys. (France), 31, 691-708. https://doi.org/10.1051/jphys:01970003107069100
Liebert, L., Martinet, A. (1980). Ferronematic lyotropic. IEEE Transactions on Magnetics, 16(2), 266-269. https://doi.org/10.1109/TMAG.1980.1060607
Chen, S. H., Amer, N. M. (1983). Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals. Physical review letters, 51(25), 2298-2301.
https://doi.org/10.1103/PhysRevLett.51.2298
Liebert, L., Neto, A. F. (1984).Optical microscopic observation of depletion layers, in a calamitic ferronematic lyomesophase. Journal de Physique Lettres, 45(4), 173-178.
https://doi.org/10.1051/jphyslet:01984004504017300
Chen, S. H., Chiang, S. H. (1987).The magnetic-field-induced birefringence of the mixtures of the chiral molecules and the ferronematic liquid crystals. Molecular Crystals and Liquid Crystals, 144(5), 359-370. https://doi.org/10.1080/15421408708084229
Burylov, S. V., Raikher, Y. L. (1995). Macroscopic properties of ferronematics caused by orientational interaction on particle surfaces. I. Extended continuum model. Molecular Crystals and Liquid Crystals, 258, 107-122. https://doi.org/10.1080/10587259508034552
Burylov, S. V., Zadorozhnii, V. I., Pinkevich, I. P., Reshetnyak, V. Y., Sluckin, T. J. (2002). Magnetic field induced orientational bistability in a ferronematic cell. Molecular Crystals and Liquid Crystals, 375(1), 525-534. https://doi.org/10.1080/10587250210569
Garbovskiy, Yu. A., Glushchenko, A. V. (2010). Liquid crystalline colloids of nanoparticles: preparation, properties, and applications. Solid State Physics, 62, 1-74. https://doi.org/10.1016/B978-0-12-374293-3.00001-8
Kredentser, S., Buluy, O., Davidson, P., Dozov, I., Malynych, S., …, Reznikov, Yu. (2013). Strong orientational coupling in twocomponent suspensions of rod-like nanoparticles. Soft Matter., 9(20), 5061-5066. https://doi.org/10.1039/c3sm27881f
Chernyshuk, S. B., Lev, B. I. (2010). Elastic interaction between colloidal particles in confined nematic liquid crystals. Physical Review E., 81(4), 041701. https://doi.org/10.1103/PhysRevE.81.041701
Burylov, S. V., Zakhlevnych, A. N. (2013). Orientational energy of anisometric particles in liquid-crystalline suspensions. Physical Review E., 88, 012511. https://doi.org/10.1103/PhysRevE.88.012511
Gdovinova, V., Tomašovicová, N., Éber, N., Tóth-Katona, T., …, Kopčanský, P. (2014). Influence of the anisometry of magnetic nanoparticles on the isotropic-nematic phase transition. Liquid Crystals, 41, 1773-1777. https://doi.org/10.1080/02678292.2014.950615
Prodanov, M. F., Buluy, O. G., Popova, E. V., Gamzaeva, S. A., Reznikov, Yu. O., Vashchenko, V. V. (2016). Magnetic actuation of a thermodynamically stable colloid of ferromagnetic nanoparticles in a liquid crystal. Soft Matter., 12, 6601. https://doi.org/10.1039/C6SM00906A
Smalyukh, I. I. (2018). Liquid crystal colloids. Annual Review of Condensed Matter Physics, 9, 207-226. https://doi.org/10.1146/annurev-conmatphys-033117-054102
Burylov, S., Petrov, D., Lacková, V., Zakutanská, K., …, Tomašovičová, N. (2021). Ferromagnetic and antiferromagnetic li quid crystal suspensions: Experiment and theory. Journal of Molecular Liquids, 321, 114467. https://doi.org/10.1016/j.molliq.2020.114467
Gоtra, Z. Yu., Zelinskiy, R. Ya., Mikitjuk, Z. М., Sorokin, V. М., Sushinsjkiy, О. E., Fechan, А. V. (2010). Liquid crystal electronics. Lviv [in Ukrainian].
Rao, Yu., Yamin, Xu. (2012). Liquid crystal thermography measurement uncertainty analysis and its application to turbulent heat transfer measurements. Advances in condensed matter physics, 898104.
https://doi.org/10.1155/2012/898104
Patent of Ukraine № 94082. The method of manufacturing the primary transducer of the fiber optic temperature sensor. Gоtra Z. Yu., Mikitjuk Z. М., Fechan А.V., Sushinsjkiy О. E., …, Turik, P. М. [in Ukrainian].
Patent of Russian Federation № 2253902. Fire alarm sensor. Tolstunov S. A., Moser S. P. [in Russian].
Zakutanská, K., Lacková, V., Tomašovičová, N., Burylov, S., … Kopčanský, P. (2019). Nanoparticle's size, surfactant and concentration effects on stability and isotropic-nematic transition in ferronematic liquid crystal. Journal of Molecular Li quids, 289, 111125. https://doi.org/10.1016/j.molliq.2019.111125
Patent of Ukraine № 143003. Optical temperature sensor on liquid crystals. Burylov S. V., Burylova N. V., Skosar V. Yu. [in Ukrainian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Copyright Notice Authors published in the journal “Science and Innovation” agree to the following conditions: Authors retain copyright and grant the journal the right of first publication. Authors may enter into separate, additional contractual agreements for non-exclusive distribution of the version of their work (article) published in the journal “Science and Innovation” (for example, place it in an institutional repository or publish in their book), while confirming its initial publication in the journal “Science and innovation.” Authors are allowed to place their work on the Internet (for example, in institutional repositories or on their website).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.