Infrared Thermography as an Effective Tool for Research and Industrial Application




thermography, science, scientific research, biological object, temperature


Introduction. Improving the informativeness and efficiency of research through the use of infrared thermography is a vital task of modern science and industry.
Problem Statement. In recent years, infrared thermography has gained significant importance in physical research, medicine, industry, and others. The use of high-precision and high-speed thermographs with high resolution has opened up new opportunities for thermography application. The widespread introduction of the thermographic research method and its practical use are constrained by the lack of completed scholarly research works on the interpretation of thermographic images and by understudied capabilities of the method. The introduction
of remote infrared thermography is a topical issue of scientific importance.
Purpose. The purpose of this research is to demonstrate the capabilities of the method in various fields of human activity and to analyze thermographic images in detail.
Materials and Мethods. A thermograph with a matrix photodetector of domestic production has been used. A few studies have been performed with the use of the FLIR Systems (USA) thermograph.

Results. It has been shown that thermography is a modern, high-precision quantitative research method that significantly expands the instrumental base for scholarly research. On specific examples, the capabilities of thermography in terms of increasing the information content for both scholarly research and practical application have been considered.
Conclusions. The obtained new research and practical results of the use of infrared thermography have demonstrated the effectiveness of the method, which allows introducing thermography as a powerful tool for modern scientific research in a wide range. The introduction of this method expands the instrumental base of modern scholarly and practical research.


Download data is not yet available.


Emelyanov, V. A., Emelyanova, N. Yu. (2013). Intellectual method of recognition of thermograms using contour analysis. Information processing systems, 9(116), 5—19 [in Ukrainian].

Balashov, A. A., Katsuba, D. S. (2014). Method for determining the working areas of experimental thermograms. Issues of modern science and practice, V. I. Vernadsky University, 3(53), 214—219 [in Russian].

Kozhevnikova, I. S., Pankov, M. N., Ermoshina, N. A. (2017). Methods of processing and analysis of thermograms for express diagnostics of breast neoplasms. Journal of medical and bioresearch, 5, 55—56. https://doi/org/10.17238/issn25421298.2017.5.2.56. [in Russian].

Shevchenko, V. S., Nazarchuk, S. S., Dunaevskyi, V. I., Maslov, V. P., Tymofeiev, V. I., Kotovskyi, V. Y. (2019). Improving the informativeness of thermographic images in medical practice. Bulletin of KPI. Instrument making series, 57(1), 96—101 [in Ukrainian].

Khizhnyak, L. N., Khizhnyak, E. P., Ivanitsky, G. R. (2012). Diagnostic capabilities of matrix infrared thermography. Bulletin of new medical technologies, XIX(4), 170—176 [in Russian].

Kabaeva, O. N., Sadovnikov, I. V. (2016). Thermal imager in the modern world. Scientific discussion: question of technical sciences, 2(32), 76—81 [in Russian].

Firago, V. A., Levkovich, N. V., Tryagunov, O. V., Sakovich, I. A., Semenovich, S. N., Stetsko, I. P. (2016). High-temperature three-zone high-resolution thermal imager IT-ZSM. In collection: International Congress on Informatics: Information Systems and Technologies. Materials of the International Scientific Congress, 824—827 [in Russian].

Vavilov, V., Klimov, A., Nesteruk, D., Shiryaev, V. (1 April, 2003). Detecting water in aviation honeycomb structures by using transient IR thermographic NDT. Proceedings of SPIE - The International Society for Optical Engineering. K. E. Cramer; X. P. Maldague. Proc. SPIE 5073, Thermosense XXV, 345—355.

Vavilov, V. P., Nesteruk, D. F. (2013). Non-destructive testing of materials by ultrasonic and induction thermography. Innovation and expertise, 1(10), 40—47 [in Russian].

Yuriev, V. A., Kalinushkin, V. P., Lygtkin, A. P., Lyapunov, S. I. (2004). The use of infrared thermography for the diagnosis of silicon ingots. Microelectronics, 33(6), 429—432 [in Russian].

Porev, V. A., Dunaevskyi, V. I., Bozhko, K. M. (2014). Thermographic control of solar cells and batteries in the mode of stabilization of heating with a dark current. Bulletin of the Academy of Engineering Sciences A.M. Prokhorov, 2, 57—61 [in Russian].

Bozhko, K. M., Dunaevskyi, V. I., Kotovskyi, V. Y., Maslov, V. P., Porev, V. A. (2013). Infrared thermography of solar cells heated by dark current. Bulletin of the National Technical University of Ukraine “Kyiv Polytechnic Institute”. Instrument manufacturing, 46, 56—63 [in Ukrainian].

Kiselev, V. V., Soloviev, D. E. (2014). Application of the method of infrared thermography in mining. Science and technology in Yakutia, 1(26), 1—17 [in Russian].

Vavilov, V. P. (2009). Infrared thermography and thermal control. Moscow: ID Spectrum [in Russian].

Expansion of the scope of infrared cameras FLIR Thermal CAM E-series. (2006). Energetik, 1, 44—45 [in Russian].

Heather, R., Shannon, John M., Sigda, Remke L., Van Dam, Jan M.H., Hendrickx, Virginia T., McLemore. (2005). Thermal Camera Imaging of Rock Piles at the Questa Molybdenum Mine, Questa, New Mexico. Proceedings America Society of Mining and Reclamation. 1015—1028. https://doi/org:/10.21000/JASMR05011015

Myagkiy, A. V., Orel, R. P. (2013). Thermal control of radio electronic equipment. Economics, Science, Production: Collection of Scientific Papers, 26, 120—122 [in Russian].

Budadin, O. N., Duzhiy, A. V. (2001). System of thermal contactless control of continuity metal rolling and quality of materials of heat generating objects. Factory laboratory. Diagnostics of materials, 11, 29—32 [in Russian].

Meshkov, S. N., Orel, R. P. (2015). Application of thermography to determine the state of metal in pipelines. Technical diagnostics and non-destructive testing, 2, 30—35 [in Russian].

Budadin, O. N., Potapov, A. I., Kolganov, V. I., Troitskiy-Markov, T. E., Abramova, E. V. (2002). Thermal non-destructive testing of products. Moscow: Nauka [in Russian].

Uvarova, I. A. (2018). Thermography in forensic science: concept and meaning. Bulletin of Moscow University S. Yu. Witte. Series 2. Legal Sciences, 3(17), 59—61 [in Russian].

Kholopov, A. V. (2013). New in forensics. Criminalist, 1(12), 109—112 [in Russian].

Znamenskaya, A. I., Koroteeva, E. Yu., Khakhalin, A. V., Shishakov, V. V., Isaenko, S. A., Chernorizov, A. M. (2017). Thermographic visualization and remote analysis of dynamic processes of the face. MSU Bulletin. Physics. astronomy, 6, 88—93 [in Russian].

Dvorkovich, A. V., Zaretsky, A. P., Mityagin, K. S., Koposov, D. E. (2017). Algorithms for processing thermal imaging

images for the analysis of qualitative indicators of the hemodynamics of the arteries of the face. Works MIPT, 9(4), 190—200 [in Russian].

Rosenfeld, L. G., Machulin, V. F., Venger, E. F., Kolotilov, N. N., Samokhin, A. V., Zabolotnay, D. D., …, Soloviev, E. A.

(2008). Remote infrared thermography: achievements, modern possibilities, prospects. Medical business, 5—6, 119—124 [in Ukrainian].

Orel, V. E., Nikolov, N. A., Romanov, A. V., Dzyatkovskaya, N. N., Melnik, Yu. I. (2008). The effect of increasing the inhomogeneity of the electromagnetic field on the enhancement of the antitumor activity of doxorubicin. Electronics and communications. Biomedical devices and systems, 2(3—4), 173—177 [in Ukrainian].

Kozhevnikov, I. S., Pankov, M. N., Gribanov, A. V., Startseva, L. F., Ermoshin, N. A. (2017). Application of infrared thermography in modern medicine (literature review). Human Ecology, 2, 39—46 [in Ukrainian].

Ostafiychuk, D. I., Shaiko-Shaikovsky, O. G., Bilov, M. Ye., Chibotaru, K. I. (2019). Thermography, application in medicine. Clinical and experimental pathology, 18, 1(167), 126—132 [in Ukrainian].

Morozov, A. M., Mokhov, E. M., Kadykov, V. A., Panova, A. V. (2018). Medical thermography: opportunities and prospects. Kazan Medical Journal, 99(2), 264—270 [in Russian].

Kotovskyi, V. Y., Dzhezheria, Y. I. (2014). Non-invasive technologies in biomedical research. Kyiv [in Ukrainian].

Mercer, J. B. (2000). Infrared Thermal Imaging in Modern Reserch — A Technique with Extensive Possibilities. The Kastelli Symposium: Oulu-Finland, 135—138.

Hussein Jaffer, MD, Kieran J. Murphy, MB, FRCPC, FSIR. (2017). Magnetic Resonance Imaging-Induced DNA Damage. Canadian Association of Radiologists Journal, 68, 2—3.

Hill, M. A., Nell, P. O., McKenna, W. G. (2016). Comments on potential health effects of MRI-induced DNA lesions:

quality is more important to consider than quantity. European Heart Journal - Cardiovascular Imaging, 17, 1230—1238.

Orel, V. E., Nikolov, N. A., Kotovskyi, V. Y., Dunaevskyi, V. I., Smolanka, I. I., Loboda, A. D., …, Yaroshenko, O. Yu.

(2012). Computer structural analysis of thermal field patterns in body tissues under the influence of radiofrequency

moderate hyperthermia. Electronics and communications, 5(70), 15—23 [in Ukrainian].

Nicholas A., Diakides, Joseph D., Bronzino (Eds.). (2006). Medical Infrared imaging. London, New. York. 451 p.

Park, J. V., Kim, S. H., Kim, S. D., Lim, D. J., Cho, T. H. (2003). The role of thermography in clinical practice: review of

the literature. Thermology International, 13, 77—78.

Dekhtyarev, Yu. P., Nichiporuk, V. I., Mironenko, S. A., Kovalchuk, I. S., Venger, E. F., Dunaevskyi, V. I., Kotovskyi, V. Y. (2010). The place and role of remote infrared thermography among modern diagnostic methods. Electronics and communications. Thematic issue “Electronics and Nanotechnology”. Biomedical devices and systems, 2, 192—196 [in Ukrainian].

Kindras, I. B., Dunaevskyi, V. I., Liptuha, A. I., Tymofeyev, V. I., Kotovskyi, V. Y., Nazarchuk, S. S. (2020). Infrared radiation from the affected areas and its registration in maxillofacial pathology. Ukrainian Medical Journal, 2, 1(135), 3—5 [in Ukrainian].

Zabolotny, D. I., Rosenfeld, L. G., Zabolotnaya, D. D., Dunaevskyi, V. I., Kotovskyi, V. Y., Tymofeyev, V. I., Nazarchuk, S. S. (2016). Thermographic diagnostics of diseases of the paranasal sinuses. Ukrainian Medical Journal, 1, 1—4 [in Ukrainian].

Dunaevskyi, V. I., Maslov, V. P., Tymofeyev, V. I., Nazarchuk, S. S., Kotovskyi, V. Y. (2019). Early detection of kidney

disease by infrared thermography. Collection of abstracts of the XVIII International Conference “Instrument Making: Status and Prospects” (15-16 May, Kyiv), 136—138 [in Ukrainian].

Gaisin, I. R., Bagaytdinova, Z. R. (2019). Current trends in the definition and treatment of Raynaud`s phenomenon. Attending doctor, 2, 38—43 [in Russian].

Hulchiy, M. V., Nazarchuk, S. S., Dunaevskyi, V. I., Kotovskyi, V. Y., Tymofeyev, V. I. (2018). Monitoring the state of

blood circulation in the lower extremities in patients with diabetes. International journal of endocrinology, 14(8), 64—70 [in Ukrainian].

Uschkov, A. V. (2008). Restoration of the thyroid gland. Moscow [in Russian].

Rehkugler, G. E., Gerald, Е., James, А. (1987). Image processing algorithm for apple defect detection. Paper ASAE, 87, 3041. 8 p.

Budagovskaya, O. N. (2011). Optical method for diagnostics of maturity and quality of fruit and vegetable products. Bulletin of Michurinsk State Agrarian University, 2(2), 83—91 [in Russian].

Herppich, W. B. (2002). Chlorophyll fluoreszenz bild analyse und Fluoreszenz spektr alanalyse. Landtechnik. 57(2), 98—99.

Nartov, V. P., Dragavtsev, V. A. (2013). Prospects for the use of modern thermal imaging for the diagnosis of infections and tissue hydration in plant breeding for drought resistance and disease resistance. Agrophysics, 4(12), 20—25 [in Russian].

Linke, M., Beuche, H., Geye,r M., Hellebrand, H. J. (2000). Possibilities and limits of the use of thrermography for the examination of horticultural products. Agratechnische Forchung, 6(6), 110—114.

Link, M., Herold, B., Hellebrandt, H. J. (2001, 21—23 March). Thermographic studies of horticultural products. ASTEQ Final Plenary Meeting, Paris.

Linke, V., Beuche, H., Geyer, M., Hellebrand, H. J. (2000). Einsatzmoglichkeiten und Grenzen der Thermografie. Untersuchung gartenbaulicher Produkte. Landtechnik, 55(6), 428—429.

Garcia-Tejero, I. F., Hernandez-Cotan, A., Apolo, O. E., Duran-Zuazo, V. H., Portero, M. A., Rubio-Casal, A. E. (2017).

Infrared thermography to select commercial varieties of maize in relation to drought adaptation. Quant. InfraRed Thermogr., 14, 54—67.

Raphael A. C. N., Casari, Dayane S., Paiva, Vivianny N. B., Silva, Thalita M. M., Ferreira, Manoel T., Souza, Nelson G.,

Oliveira, …, and Carlos A.F., Souza. (2019). Using Tthermography to Confirm Genotypic Variation for Drought Response in Maize. Int. J. Mol. Sci., 20(9), 2273.

Loshinin, Yu. V., Folomeykin, Yu. I., Pakhomkin, S. I. (2015). Measurement of heat capacity of coated samples by laser flash method. Factory laboratory, material diagnostics, 81(9), 40—44 [in Ukrainian].

Konstantin Bozhko, Volodymyr Maslov, Volodymyr Porev, Volodymyr Timofeev, Evgen Venger, Vadim Dunaevskiy, …, Mykhailo Lysenko. (2014). Thermographic modeling of pollution of reservoirs with solutions NaCl. American Journal of Environmental Protection, 3(5), 263—266.

Bozhko, K. M. (2016). Improvement of methods and means of control of defects photometric solar batteries. (PhD) (Technic.). Kyiv [in Ukrainian].

Patent of Ukraine for a utility model №92797. Bozhko K. M. Method of control of defects in solar batteries [in Ukrainian].

Matyash, I. E., Minaylova, I. A., Mishchuk, O. M., Rudenko, S. P., Stetsenko, M. O. (2018). Physics and technique of modulation polarimetry. Monograph. (Eds. by proff. Serdeha B.K. Kyiv [in Ukrainian].




How to Cite

Venher Є., Dunaevskyi В., Kotovskyi В., Bolgarska С., Kyslyi В., Timofeyev В., Orel В., & Nazarchuk С. (2021). Infrared Thermography as an Effective Tool for Research and Industrial Application. Science and Innovation, 17(5), 20–33.



Scientific and Technical Innovation Projects of the National Academy of Sciences