Development of Technology for Vacuum Surface Conditioning by RF Plasma Discharge Combined With DC Discharge

Authors

DOI:

https://doi.org/10.15407/scine17.04.033

Keywords:

plasma, glow discharge, microwave discharge, stellarator, and vacuum

Abstract

Introduction. It is important to decrease light and heavy impurities influxes towards the plasma volume during the high temperature plasma experiments in fusion devices. This is why the conditioning of the wall inner vacuum
surfaces is a basic part of the fusion device operation.
Problem Statement. The conventional inner vacuum chamber surface conditioning methods has a significant drawback: sputtering materials in a vacuum chamber. The inner vacuum surfaces can be also conditioned with radio-frequency (RF) discharge plasma, but the conditioning effectiveness is limited by low ion energy.
Purpose. The purpose of this research is to develop vacuum surface conditioning technology by the radio frequency plasma combined with DC discharge.

Materials and Methods. The noncontact passive method of optical plasma spectroscopy has been used to estimate ion plasma composition. The stainless steel outgassing has been determined in situ with the thermodesorption probe method. The sputtering of the samples has been measured with the weight loss method.
Results. The studies of combined discharge have shown that: the anode voltage of combined discharge is lower than in case of the glow discharge; the stainless steel 12Kh18N10T erosion coefficient is about 1.5 times less in the
case of combined discharge than in the glow one; the thermal desorption diagnostic of wall conditions in the DSM-1 has shown better efficiency with the combined discharge as compared with the glow discharge. The
proposed technology is an original one and has no analogs.
Conclusions. The reported research results have shown good prospects for the combined discharge usage for plasma walls conditioning and opportunities for using the combined discharge technology for big fusion machines.

References

Shimada, M., Pitts, R. (2011). Wall conditioning on ITER. Journal of Nuclear Materials, 415(1), 5—19. doi: 10.1016/j.

jnucmat.2010.11.085.

Douai, D., Kogut, D., Wauters, T., Brezinsek, S., Hagelaar, G. J. M., Hong, S. H., Lomas, P. J., Lyssoivan, A., Nunes, I.,

Pitts, R. A., Rohde, V., de Vries, P. C. (2015). JET EFDA Contributors,The ASDEX-Upgrade Team. Wall conditioning

for ITER: Current experimental and modeling activities. Journal of Nuclear Materials, 463, 150—156. doi: 10.1016/j.

jnucmat.2014.12.034.

Dylla, H. F. (1980). A review of the wall problem and conditioning techniques for tokamaks. Journal of Nuclear Materials, 93, 61-74. doi: 10.1016/0022-3115(80)90303-7.

Winter, J. (1989). Wall conditioning of fusion devices by reactive plasmas. Journal of Nuclear Materials, 161(3), 265— 330. doi: 10.1016/0022-3115(89)90466-2.

Winter, J. (1996). Wall conditioning in fusion devices and its influence on plasma performance. Plasma Phys. Control. Fusion, 38, 1503—1542. doi: 10.1088/0741-3335/38/9/001.

Wauters, T., Brakel, R., Brezinsek, S., Dinklage, A., Goriaev, A., Laqua, H. P., Marsen, S., Moseev, D., Stange, T., Schlisio, G., Sunn Pedersen, T., Volzke, O., Wenzel, U. (2018). Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X. Nuclear Fusion, 58(6), 066013-066020. doi: 0000-0002-7213-3326.

Wauters, T., Goriaev, A., Alonso, A., Baldzuhn, J., Brakel, R., Brezinsek, S., Dinklage, A., Grote, H., Fellinger, J., Ford, O. P., König, R., Laqua, H., Matveev, D., Stange, T., Vanó, L. (2018). Wall conditioning throughout the first carbon divertor campaign on Wendelstein 7-X. Nuclear Materials and Energy, 17, 235—241. doi: 10.1016/j.nme.2018.11.004

De La Cal, E., Gauthier, E. (2005). Review of radio frequency conditioning discharges with magnetic fields in superconducting fusion reactors. Plasma physics and controlled fusion, 47, 197—218. doi: 10.1088/0741-3335/47/2/001.

Wauters, T., Borodin, D., Brakel, R., Brezinsek, S., Brunner, K. J., Buermans, J., Coda, S., Dinklage, A., Douai, D., Ford, O., Fuchert, G., Goriaev, A., Grote, H., Hakola, A., Joffrin, E., Knauer, J., Loarer, T., Laqua, H., Lyssoivan, A., Moiseenko, V., Moseev, D., Ongena, J., Rahbarnia, K., Ricci, D., Rohde, V., Romanelli, S., Sereda, S., Stange, T., Tabarés, F. L., Van , L., Volzke, O., Wang, E. (2020). Wall conditioning in fusion devices with superconducting coils. Plasma physics and controlled fusion, 62, 034002-034014. doi: 10.1088/1361—6587/ab5ad0.

Sergienko, G., Lyssoivan, A., Philipps, V., Kreter, A., Schulz, C., Huber, A., Esser, H. G., Hu, J. S., Freisinger, M., Reimer, H., Samm, U. (2009). Ion cyclotron wall conditioning in reactive gases on TEXTOR. Journal of nuclear materials, 390, 979—982. doi: 10.1016/j.jnucmat.2009.01.252.

Nazarov, N. I., Plyusnin, V. V., Ranyuk, T. Yu. (1987). Cleaning of surfaces by plasma in the Uragan-3 torsatron. Fizika Plazmy, 13, 1511—1515 [in Russian].

Moiseenko, V. E., Burchenko P. Ya., Chechkin, V. V., Chernyshenko, V. Ya., Grigor`eva, L. I., Hartmann, D., Koch, R., Konovalov, V. G., Lozin, A. V., Lyssoivan, A. I., Pashnev, V. K., Shapoval, A. N., Shvets, O. M., Skibenko, A. I., Stadnik, Yu. S., Tereshin, V. I., Voitsenya, V. S., Volkov, E. D. (2009). Wall Conditioning RF Discharges in Uragan-2M Torsatron. 36th

EPS Conference on Plasma Phys. (June 29 — July 3, 2009, Sofia). ECA, 33E, P-5.199.

Lozin, A. V., Moiseenko, V. E., Grigor’eva, L. I., Kozulya, M. M., Kulaga, A. E., Lysoivan, A. I., Mironov, Yu. K., Pavlichenko, R. O., Romanov, V. S., Chernyshenko, V. Ya., Chechkin, V. V. (2013). Cleaning of inner vacuum surfaces in the Uragan-3M facility by radio-frequency discharges. Plasma Physics Reports, 39(8), 624—631. doi: 10.1134/S1063780X13070052.

Moiseenko, V. E., Lozin, A. V., Chechkin, V. V., Chernyshenko, V. Ya., Grigor’eva, L. I., Kramskoi, Ye. D., Korovin, V. B., Kozulya, M. M., Lyssoivan, A. I., Schebetun, A. V., Shapoval, A. N., Shtan’, A. F., Solodovchenko, S. I., Voitsenya, V. S.,

Garkusha, I. E. (2014). VHF discharges for wall conditioning at the Uragan-2M torsatron. Nuclear Fusion, 54, 033009033014. doi: 10.1088/0029-5515/54/3/033009.

Lozin, A. V., Moiseenko, V. M., Kozulya, M. M., Kramskoj, E. D., Korovin, V. B., Yevsyukov, A. V., Grigor’eva, L. I., Beletskii, A. A., Shapoval, A. N., Makhov, M. M., Krasyuk, A. Yu., Baron, D. I. (2016). Continuous wall conditioning VHF

discharge without magnetic field in a toroidal device. Problems of Atomic Science and Technology, 6, 60.

Bondarenko, M. N., Glazunov, G. P., Konotopskiy, A. L., Lozin, A. V., Moiseenko, V. E., Aksenov, N. N., Garkusha, I. E., Herashchenko, S. S., Makhlaj, V. A. (2018). Influence of different types of hydrogen treatment on hydrogen retention and release from 12kh18n10t steel. Problems of Atomic Science and Technology, 6, 50.

Lobov, G. D., Eremeyev, V. I. (1961). Some effects accompanying detection in a gas discharge. Radiotekh. Elektron., 6, 286 [in Russian].

Kopeika, N. S., Farhat, N. H. (1975). Video detection of millimeter waves with glow discharge tubes: Part I—Physical description; part II—Experimental results. IEEE transactions on electron devices, 22(8), 534—548. doi: 10.1109/T-ED. 1975.18175.

Rosenberg A., Ben-Aryeh, Y., Politch, J. and Felsteiner, J. (1982). Amplification, cnrrent-voltage variations, and refraction in the interaction between millimeterwave radiation and the glow-discharge plasma Physical Review A, 25, 1160—1177. doi: 10.1103/PhysRevA.25.1160.

Lebedev, Yu. A., Tatarinov, A. V., Epshtein, I. L. (2007). An electrode microwave discharge in a static field. High Temperature, 283-290. doi: 10.1134/S0018151X07030017.

Lebedev, Yu. A., Epshtein, I. L., Yusupova, E. V. (2014). Influence of a DC field on the near-electrode zone of nonuniform microwave discharge in hydrogen. High Temperature, 52, 150—156. doi: 10.7868/S0040364414020136.

Burchenko, P. Ya., Volkov, E. D., Gribanov, Yu. A., Nekludov, I. M., Opalev, O. A., Rubtsov, K. S. Rybalko, I. F., Ternopol, A. M. (1985). The study of materials erosion in a discharge with oscillating electrons. Sov. J. Tech. Phys., 55(11), 2097—2288 [in Russian].

Glazunov, G. P., Volkov, E. D., Baron, D. I., Dolgiy, A. P., Konotopskiy, A. L., Hassanein, A. (2003). Effect of Low/High

Hydrogen Recycling Operation on Palladium Sputtering under Steady State Plasma Impact. Physica Scripta, 103, 89—

doi: 10.1238/Physica.Topical.103a00089.

Glazunov, G. P., Bondarenko, M. N., Konotopskiy, A. L., Volkov, E. D. Erosion behavior of tungsten coatings in magnetron type discharges with hot cathode. (2008). Problems of Atomic Science and Technology, 14(6), 107—109.

Glazunov, G. P., Andreev, A. A., Bondarenko, M. N., Konotopskiy, A. L., Moiseenko, V. E., Stolbovoy, V. A. (2011). Erosion vacuum-arc TiN coatings and stainless steel under impact of steady state plasma of magnetron type discharges. Physical surface engineering, 9(3), 250—255 [in Russian].

Kramida, A., Ralchenkob, Yu., Reader, J. and NIST ASD Team (2019). NIST Atomic Spectra Database (version 5.7.1).

National Institute of Standards and Technology, Gaithersburg, MD. doi: 10.18434/T4W30F.

Glazunov, G. P., Baron, D. I., Moiseenko, V. E., Bondarenko, M. N., Konotopskiy, A. L., Lozin, A. V., Lyssoivan, A. I.,

Wauters, T., Garkusha, I. E. (2018). Characterization of wall conditions in Uragan-2M stellarator using stainless steel

thermal desorption probe. Fusion Engineering and Design, 137, 196—201. doi: 10.1016/j.fusengdes.2018.09.010.

Glazuno, G. P., Baron, D. I., Bondarenko, M. N., Moiseenko, V. E., Garkusha, I. E., Konotopskiy, A. L., Lozin, A. V., Lyssoivan, A. I., Wauters, T. (2018). In situ quantification of plasma facing surface conditions in the Uragan-2M torsatron. Problems of Atomic Science and Technology, 1(107), 12—16.

Babad-Zakhryapin, A. A., Kuznetsov, G. D. (1982). Radiation-stimulated chemical-thermal treatment. Moscow: Energy Publishing House, 96 p. [in Russian].

Laegreid, N., Wehner, G.K. (1961). Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV. J. Appl. Phys., 32(4), 365—369. doi: 10.1063/1.1736012.

Pavlichenko, O. S. (1993). First results from the ‘URAGAN-2M’ torsatron. Plasma physics and controlled fusion, 35, 223. doi: 10.1088/0741-3335/35/SB/018.

Moiseenko, V. E., Lozin, A. V., Kozulia, M. M., Mironov, Yu. K., Romanov, V. S., Konovalov, V. G., Shapoval, A. N. (2017). Alfven plasma heating in stellarator Uragan-2M. Ukrainian Journal of Physics, 62, 311. doi: /10.15407/ujpe62.04.0311.

Moskalev, B. I. (1969). Razryad s polyim katodom. Moscow: Energy Publishing House, 184 p. [in Russian].

Kolobov, V. I., Metel, A. S. (2015). Glow discharges with electrostatic confinement of fast electrons. J. Phys. D: Appl. Phys., 48, 233001. doi: 10.1088/0022-3727/48/23/233001.

Downloads

Published

2021-08-09

How to Cite

Kovtun, Y., Glazunov, G., Moiseenko, V., Maznichenko, S., Bondarenko, M., Konotops`kyy, O., Siusko, Y., Tarasov, I., Shapoval, A., Lozin, O., Korovin, V., Kramsky, E., Kozulia, M., Baron, D., Listopad, V., & Krasyuk, A. (2021). Development of Technology for Vacuum Surface Conditioning by RF Plasma Discharge Combined With DC Discharge. Science and Innovation, 17(4), 33–43. https://doi.org/10.15407/scine17.04.033

Issue

Section

Scientific and Technical Innovation Projects of the National Academy of Sciences