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MEAN-VARIANCE OPTIMIZATION: 
MODELING AN OPTIMAL INVESTMENT 
PORTFOLIO IN THE U.S. TECH SECTOR

Introduction. Modern Portfolio Theory (MPT) provides a quantitative framework for making informed invest-
ment decisions. The highly variable and uncertain U.S. technology sector challenges traditional investment app-
roaches, necessitating methods that better address its unique risk-return trade-off s.

Problem Statement. Traditional investment strategies frequently fail to capture the dynamic and volatile 
nature of the tech market. They rely on limited data and ineffi  cient calculation processes, resulting in suboptimal 
asset allocation. One of the advanced methods for refi ning portfolio formation strategies tailored to the tech mar-
ket is the mean-variance optimization (MVO) method.

Purpose. To optimize mean-variance optimization (MVO) to construct optimal portfolios for the U.S. tech sec-
tor, leveraging contributions from MPT, Sharpe’s optimization techniques, and Tobin’s asset allocation model.

Materials and Methods. Historical stock data serves as the basis for implementing MVO with Python to const-
ruct portfolios that include a risk-free asset, enabling the calculation of the Capital Allocation Line (CAL) and 
the upper Effi  cient Frontier. The geometric mean evaluates expected returns, improving long-term predictability 
and portfolio comparability, while daily returns enhance the model’s sensitivity.

Results. The study has demonstrated that optimized portfolios achieve higher Sharpe ratios and superior risk-
return characteristics, outperforming benchmarks through effi  cient computation.

Conclusions. The MVO is an eff ective investment tool for the tech sector, enabling informed asset selection and 
portfolio construction. This study has highlighted the importance of integrating iterative calculation processes and 
advanced computational techniques to adapt traditional investment strategies to the extensive data requirements 
of today’s markets.
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In the realm of investment, particularly within the 
dynamic U.S. tech sector, constructing a portfo-
lio that navigates the balance between risk and 
return is an ongoing challenge. The concept of 
mean-variance optimization emerges as a crucial 
framework in this endeavor, offering a systematic 
approach to achieving optimal portfolio const-
ruction. As markets continue to evolve, characte-
rized by rapid technological advances and unpre-
dictable fluctuations, the need for sophisticated, 
yet accessible, investment strategies become in-
creasingly apparent.

This paper explores the mean-variance optimi-
zation (MVO) model as a tool for informed invest-
ment decision-making in a complex landscape. It 
simplifies navigating uncertainties by using prices 
as the sole input, which, while not detailing the 
reasons behind asset fluctuations, aggregates all inf-
luences into one comprehensive indicator, offering 
a streamlined approach to investment choices.

Portfolio investing is cross-border transactions 
and positions in debt, equity or derivative securi-
ties, where the allocation and management of di-
verse but combined investment objects are scien-
tifically based to form a diversified portfolio with 
the highest level of expected return for a given 
level of risk.

The streamlined methodology for optimal in-
vestment portfolio analysis and modeling can be 
divided into the following stages:

1. Data Collection. Select a timeframe and ga-
ther data on asset price movements from reputa-
ble sources.

2. Return Calculation. Compute actual returns 
for each asset to assess past performance.

3. Expected Return Evaluation. Calculate ex-
pected returns using historical data to forecast 
future portfolio performance.

4. Risk Assessment. Measure asset and portfo-
lio volatility, including covariance analysis to un-
derstand how asset values move in relation to each 
other, impacting portfolio diversification.

5. Optimal Asset Allocation. Employ economic-
mathematical models and software to find the ideal 
asset weights, optimizing the risk-return balance.

6. Portfolio Evaluation and Selection. Com pa-
re the selected portfolios against benchmarks, fo-
cusing on risk, return, and the Sharpe ratio for a 
comprehensive performance evaluation.

Modern Portfolio Theory (MPT), or mean-va-
riance analysis, is a mathematical framework for 
assembling a portfolio of assets such that the ex-
pected return is maximized for a given level of risk. 
It is a formalization and extension of diversifica-
tion in investing, the idea that owning diffe rent 
kinds of financial assets is less risky than ow ning 
only one type. Its key insight is that an asset’s risk 
and return should not be assessed by itself, but by 
how it contributes to a portfolio’s overall risk and 
return. The variance of return (or its trans for ma-
tion, the standard deviation) is used as a measure 
of risk because it is tractable when assets are com-
bined into portfolios [1].

Economist Harry Markowitz introduced MPT 
in a 1952 essay, which represents a mathematical 
optimization problem that is used to construct 
the Efficient Frontier in the context of portfolio 
selection.

Markowitz (1952, 1959) first introduced the 
mean-variance framework for portfolio selection, 
which determines optimal portfolio choices for 
individual investors given asset prices and payoff 
distributions [2]. Tobin (1958) expanded on this 
by incorporating a risk-free asset into the portfo-
lio choice problem [3]. Building upon the founda-
tional work of Markowitz and Tobin, Treynor 
(1961) and Sharpe (1963, 1964) independently 
developed a “general equilibrium” model that 
 re tained the mean-variance approach but allo-
wed for endogenous asset pricing. Their cont ri-
buti ons, along with the refinements by Mossin 
(1966) and Lintner (1965, 1969), culminated in 
what is now known as the Capital Asset Pricing 
Mo del (CAPM). This model is a key component 
of Modern Portfolio Theory and has become a cor-
nerstone in the field of financial economics [4].

This paper will utilize a focused set of models 
for portfolio construction and analysis, specifical ly 
drawing on the foundations of Harry Marko witz’s 
Mo dern Portfolio Theory and the optimization 
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techniques proposed by William Sharpe. Additio-
nally, it will incorporate James Tobin’s asset allo-
cation model to explore the interplay between 
risk-free assets and the portfolio’s risky asset mix 
within the mean-variance optimization (MVO) 
framework.

G. Markowitz, the founder of MPT, proposed 
to evaluate the random return of a deterministic 
investment portfolio by two indicators — mathe-
matical expectation and variance, and to choose 
the best investment portfolio from the set of effi-
cient portfolios of a two-criteria problem with the 
criteria of maximizing the expected return and 
minimizing the variance of the return. Mathe-
matically, the task of optimizing the investment 
portfolio is a linear objective function with quad-
ratic nonlinear constraints [5].

Cumulative portfolio risk, H. Markowitz di-
vided into two parts. To the first part, he referred 
to the systematic risk, which is caused by the eco-
nomic, psychological and political situation in 
the country, which simultaneously affects all as-
sets equally. The second is the specific risk that 
each specific asset has, which can be eliminated 
by managing the assets portfolio. 

The market portfolio is made up of individual 
stocks, so why doesn’t its variability reflect the 
ave rage variability of its components? The ans wer 
is that diversification reduces variability. Diver-
sification works because prices of different stocks 
do not move exactly together. Statisticians make 
the same point when they say that stock price 
changes are less than perfectly correlated [6].

The risk that potentially can be eliminated by di-
versification is called specific risk. Specific risk stems 
from the fact that many of the perils that surround 
an individual company are peculiar to that compa-
ny and perhaps its immediate competitors. The risk 
that we can’t avoid, regardless of how much we di-
versify is generally known as the systematic risk 
or according to [6] known as market risk. 

To measure the performance of a risky investment 
over a specific period the following formula is used:
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Where Rit is the simple return for i-th risky as-
set in a particular period t; At, At – 1 are current and 
previous risky asset price values, respectively. 

The formula for the arithmetic mean Ri of re-
turns Rit over a period T would be:
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where T is the total number of time periods over 
which the returns of the risky asset are conside-
red; Rit represents the return of the i-th risky asset 
in the t-th time period.

The expected return of the risky asset portfolio 
Rp is defined as the weighted average return of 
the assets constituting the portfolio:
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wi is the weight of the i-th risky asset in the port-
folio; n is the number of risky assets that make the 
investment portfolio; Ri is the risky asset expec-
ted return.

The risk of one risky asset is:
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The total portfolio risk is:
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where p is the investment portfolio risk level; wi, 
wj are the weights of the i-th and j-th risky assets 
in the portfolio; i, j are the standard deviations 
of returns for the i-th and j-th risky assets; pĳ is 
the coefficient of correlation between the returns 
of the i-th and j-th risky assets; cov (Ri, Rj) is the 
covariance between the returns of the i-th and 
j-th risky assets. The formula for covariance is 
given by:
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where T is the number of past observations.
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The theory of H. Markowitz allows investors 
to measure the level of risk and determine effec-
tive portfolios. 

The following represents the mathematical for-
mulation of Harry Markowitz’s portfolio optimi-
zation model, where the portfolio risk is const rai-
ned not to exceed a specified value p:
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The following is the mathematical formulation 
of Harry Markowitz’s inverse portfolio optimiza-
tion problem, which seeks to minimize risk while 
ensuring the portfolio return is not less than a 
spe cified minimum Rp:
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The formula represents a mathematical optimi-
zation problem that is used to construct the Effi-
cient Frontier in the context of portfolio selection.

In practice, both formulations can be used to 
trace out the entire Efficient Frontier by varying 
the parameters (p in the first formula, Rp in the 
second) and solving the respective optimization 
problem for each parameter value. The points ob-
tained through either method would be the same, 
representing the optimal combinations of risk 
and return that an investor can choose from based 
on their risk tolerance and return expectations.

James Tobin later extended Markowitz’s work 
by incorporating a risk-free asset into the portfo-
lio, leading to the separation theorem. This theo-
rem implies that the optimal portfolio choice can 
be decomposed into two independent tasks: the 
selection of a portfolio of risky assets (as if the risk-

free asset does not exist) and then deciding the 
mix between the risky portfolio and the risk-free 
asset. The integration of a risk-free asset simpli-
fies the opportunity set, as indicated in the sec-
ond text, by forming a straight line — known as 
the Capital Allocation Line (CAL) — in the risk-
return space, which emanates from the risk-free 
rate and is tangent to the Efficient Frontier at 
one point.

William Sharpe furthered this line of inquiry 
by developing the Capital Asset Pricing Model 
(CAPM), which provides a mechanism to assess 
the expected return on an asset by relating it to 
its risk relative to the market as a whole, through 
the beta coefficient. The CAPM demonstrates 
that the expected return on a security is a func-
tion of the risk-free rate, the security’s sensitivity 
to the market portfolio (beta), and the expected re-
turn of the market portfolio. This model underpins 
much of financial asset pricing theory and has 
profound implications for investment practice.

The contributions of these economists, rooted 
in the foundational work of Markowitz, effective-
ly bridged the gap between theoretical finance 
and practical investment strategies. Markowitz’s 
Efficient Frontier concept highlighted the trade-
off between risk and return for multiple risky as-
sets. Tobin’s introduction of a risk-free asset into 
the portfolio mix, and the resulting CAL, simpli-
fied the selection process for investors. Sharpe’s 
CAPM provided a pivotal relationship between 
an asset’s risk, its expected return, and the overall 
market, helping investors make more informed 
decisions.

The Capital Allocation Line (CAL) is a concept 
from portfolio theory that describes the risk-re-
turn trade-off of portfolios that combine a risk-free 
asset and a risky asset. The CAL formula inc ludes 
a component of risk (standard deviation or vola-
tility) to account for the risk-return trade-off of 
combining a risk-free asset with a risky portfolio.

Calculating the capital allocation line is done 
as follows:
                      Rp = Rf + (Ri – Rf)




,p

i

 (9)
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where Rp is the expected return of the portfolio 
on the CAL; Rf is the risk-free rate; Ri is the ex-
pected return of the risky portfolio (the portfolio 
of risky assets only); p is the standard deviation 
(risk) of the portfolio on the CAL; i is the stan-
dard deviation (risk) of the risky portfolio.

The term (Ri – Rf) represents the risk premium 
of the risky portfolio over the risk-free rate. The 
ratio p/i indicates how much risk is being taken 
in the portfolio compared to the risk of the risky 
portfolio. The product of these two terms is then 
added to the risk-free rate to give the expected 
return of the portfolio on the CAL.

The slope of the CAL, which is the risk premi-
um per unit of risk, can be expressed as:

                 Slope of CAL = (Ri – Rf) / i. (10)

The slope of the CAL represents the Sharpe ra-
tio of the portfolio [7], indicating the additional 
amount of return an investor can expect for each 
additional unit of risk assumed by moving from 
the risk-free asset to a portfolio that includes a com-
bination of risky assets. This measure provi des a 
comparative basis for assessing the performance of 
the portfolio against the risk-free rate, taking into 
account the volatility of the portfolio’s returns. 

Risky asset is any asset that has a significant 
level of uncertainty in its future returns, such as 
stocks or index funds. These assets have the po-
tential for higher returns compared to risk-free 
assets but come with the risk of losing value.

Risk-free asset is an asset that is assumed to 
have a certain return in the future, with no risk of 
financial loss. Typically, short-term government 
securities, like Treasury bills, are considered risk-
free assets because they are backed by the full 
faith and credit of the issuing government.

When a risk-free asset with a portfolio of risky 
assets is combined, the CAL becomes tangential 
to the Efficient Frontier at the point represen-
ting the portfolio with the highest Sharpe ratio. 
This tangency portfolio is the optimal risky port-
folio because it offers the best risk-return combi-
nation that can be achieved by investing in risky 
assets only.

The graph (Fig. 1) illustrates the concept that 
by combining a risk-free asset with the market 
portfolio [8], investors can achieve different le-
vels of expected return for different levels of risk 
by choosing a point along the CAL.

Here’s a breakdown of the figure 1:
 The vertical axis (Rp) represents the expected 

return of the portfolio.
 The horizontal axis (p) represents the stan-

dard deviation of the portfolio’s returns, which 
is a common measure of risk.

 The point Rf on the vertical axis indicates the 
risk-free rate, which is the return of an invest-
ment with no risk of financial loss.

 The curve represents the upper Efficient Fron-
tier for all possible risky portfolios (without 
including the risk-free asset). This frontier shows 
the maximum expected return for a given level 
of risk for portfolios composed entirely of risky 
assets.

 The point labeled T is known as the Tangency 
Portfolio or the market portfolio. It’s the port-
folio on the Efficient Frontier with the highest 
Sharpe ratio, i.e., it offers the best possible risk-
return combination.

 The solid line extending from Rf to T and be-
yond is the Capital Allocation Line. This line re-
presents portfolios that optimally combine the 
market portfolio T with the risk-free asset Rf.

 Any portfolio on the CAL is considered to be 
optimally diversified because it combines the 

Fig. 1. Capital Allocation Line and the Efficient Frontier



ISSN 2409-9066. Sci. innov. 2025. 21(2)106

Sholopak, V. A., and Tretiak, D. D. 

market portfolio with the risk-free asset in so-
me proportion.

 The slope of the CAL (Ri – Rf) / i represents 
the market price of risk or the “price of risk 
reduction” [9, p. 781], which is the additional 
expected return per unit of risk that an inves-
tor can obtain by moving from the risk-free 
asset to an investment in the market port fo-
lio T.

 Point A on the curve of the Efficient Frontier 
re presents a portfolio of risky assets that is not 
as optimally diversified as the market portfo-
lio T.
Upon examination of the Capital Allocation 

Line, we observe that portfolios represented by 
points below the tangency portfolio T, such as 
point A, are suboptimal within the framework of 
the MPT. This suboptimality arises from the fact 
that these portfolios do not fully utilize the diver-
sification benefits afforded by the market portfo-
lio. Additionally, points extending beyond the 
tangency portfolio T on the CAL imply the use of 
leverage, which may involve short-selling risk-
free assets to finance the purchase of additional 
units of the market portfolio. In practical invest-
ment scenarios where short-selling is either re-
stricted or undesired, these leveraged portfolios 
are not feasible.

Therefore, to construct an effective model that 
aligns with these practical constraints, we pro-
pose restricting our analysis to the segment of 
the CAL that extends from the risk-free rate Rf 
to the tangency portfolio T, inclusive of these 
endpoints. Also, the part of the Efficient Frontier 
that is abo ve the tangency point T represents 
portfolios that are composed of only risky assets 
and are highly efficient in terms of their risk-re-
turn profile inc luded. The portion of the Efficient 
Frontier that lies above the tangency point is 
typically steeper, reflecting a higher reward for 
each incremental unit of risk. These practical 
constraints would lead to better performance 
even though Python is not the fastest language 
due to its high-level nature and interpreter-based 
execution. 

The economic-mathematical portfolio model 
with maximizing return is as follows:
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where Rf is expected value of risk-free asset return; 
w0 is the weight of a risk-free asset in a portfolio.

The computation of the mathematical model 
for the Capital Allocation Line and the upper 
segment of the Efficient Frontier by employing a 
mathematical model whose objective function 
seeks to minimize portfolio risk is done as follows:
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CAL and the pa rt of the Efficient Frontier that 
is above the tangency point T can be found sepa-
rately. If w0 is allowed to vary without restriction 
but to be greater than 0, the solution to the opti-
mization problem will give the CAL, which will 
include portfolios on the straight line from the 
risk-free rate up to the tangency portfolio. If le -
verage is not desired, w0 must be constrained to 
be non-negative, which would exclude the leve-
ra ged portion of the CAL above the tangency 
portfolio. 

To find the part of the Efficient Frontier that 
lies above the tangency point, one would simply 
set w0 = 0 and resolve the optimization problem 
without the inclusion of the risk-free asset and 
set the expected return Rp to a value that is grea-
ter than the return of the tangency portfolio RT. 
This would trace out the upper part of the Effi-
cient Frontier, where investors are only taking 
positions in risky assets and not mixing in the 
risk-free asset, thus not utilizing the CAL.



ISSN 2409-9066. Sci. innov. 2025. 21(2) 107

Mean-Variance Optimization: Modeling an Optimal Investment Portfolio in the U.S. Tech Sector

It should be noted that the correctness of cal-
culations is achieved only if the data follow a nor-
mal distribution law. This requirement is usually 
not met for asset prices, but it is met for return 
logarithms. But, for further calculations of geo-
metric mean that will eventually be used for the 
calculation of the portfolio return simple returns 
are used because it’s suitable for the purpose of 
calculating the geometric mean while log returns 
are not. This approach better reflects the compo-
unded nature of investment returns over time.

The geometric mean, also known as the com-
pounded annual growth rate (CAGR) for multi-
ple periods, is often more appropriate than the 
arithmetic mean for datasets that involve compo-
unding, such as cumulative growth rates, returns 
on investments over time, or other scenarios in-
volving percentage changes. For projections over 
a year or similar periods, especially when using 
daily returns as the basis, the geometric mean is 
better suited than the arithmetic mean. It aligns 
with the principle that long-term investment re-
turns should reflect the compounded growth ra-
te, giving a realistic view of what an investor might 
expect their portfolio to achieve.

The formula for the geometric mean Ri of re-
turns Rit over a period T would be:

 
  

1/

1
(1 ) 1.

TT
i itt

R R              (13)

In the practical application of MPT, the choi-
ce between using log returns or simple returns 
for calculating the covariance matrix of risky 
 asset returns depends on several factors, inclu-
ding the time horizon of the investment and the 
specific requirements of the analysis being con-
ducted.

The formula for log return is:


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where ln denotes the natural logarithm.
We’re focusing on long-term planning and using 

daily returns as our data basis, using log returns 
to calculate the covariance matrix for assessing 

portfolio risk is a suitable approach since it can 
better handle volatility over long periods [10].

The risk-free rate is typically represented by 
the yield on government securities, such as U.S. 
Treasury bills. The rate obtained from API is 
quoted on an annual basis, so it is necessary to con-
vert it to the same frequency as our risky asset re-
turns i.e. daily.

To represent the process of converting an an-
nualized risk-free rate to a daily rate suitable for 
comparison with daily risky asset returns in a ma-
thematical formula, we can use the following app-
roach. When converting an annualized risk-free 
rate to a daily rate, it’s important not to use an 
arithmetic mean. Instead, the conversion should 
account for the compounding effect that occurs 
over the course of a year:


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where Rannual,i is the annual risk-free rate for day i; 
dyear is the number of trading days in the year, which 
is typically 252; n is the number of periods (days) 
over which the geometric mean is calculated.

While Treasury bills are typically quoted on a 
simple interest basis with a 360-day year for dis-
count securities, when integrating such data into 
a portfolio optimization model that also includes 
assets, it is needed to synchronize the data frequen-
cy. Assets are traded on days when the markets 
are open, which is generally 252 days a year. The-
refore, aligning the Treasury bill data to this same 
frequency by deannualizing to a daily rate over 
252 trading days is a practical approach. It facili-
tates direct comparison and combination of risky 
asset and risk-free returns in the portfolio optimi-
zation process.

Also, after the formation of a portfolio with dai-
ly return and risk, we will convert them into year-
ly basis for better comparison between portfolios. 
The conversion process called annualization. To 
make annualization of the portfolio that consist 
the asset return and the risk-free return with dif-
ferent frequency is a mistake.

– 1.

– 1,
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The annualized return is a form of geometric 
mean that accounts for the compounding over 
the period. The formula to convert daily portfolio 
return to an annualized return is:

 
  

d

1
Annualized Return (1 ) 1,

yearn
pt

R

where Rp are the daily portfolio return.
Using daily returns makes the model more sen-

sitive to changes, and the annual format ma kes it 
suitable for comparing performance expectations 
across different time horizons and asset classes.

Annualizing risk, typically measured as the stan-
dard deviation of returns (volatility), involves 
scaling the risk measure from a shorter period (li-
ke daily or monthly) to an annual basis. This pro-
cess is essential for comparing the risk levels of 
investments with different time frames or for pre-
senting a standardized risk measure for portfolio 
performance projections. The formula to annua-
lize volatility depends on the square root of time 
scaling rule, which is based on the assumption 
that returns are independently and identically 
distributed (i.i.d.) over time.

The formula to annualize risk is:

 Annualized Risk ,p N             (17)

where N is the number of those periods in a year 
(252 for days, 12 for months, 52 for weeks, etc.).

In academic or professional papers, having a 
detailed algebraic representation of the methodo-
logy is necessary to convey the approach taken. 
Also, a precise formulation can be directly trans-
lated into code for computational purposes. It ser-
ves as a blueprint for the algorithms used in soft-
ware implementations.

To represent the process for calculating the 
Ca pital Allocation Line and the upper part of the 
Efficient Frontier, we would extend the formu-
la (12) to include the iterative process of varying 
the target return of the portfolio. Here is how this 
can be mathematically structured:

Given:
 : Covariance matrix of risky asset returns;
 R: A column vector of expected returns for 

each asset;

 RT: The transpose of  R, which converts it from 
a column vector into a row vector;

 Rf: Risk-free rate;
 Rpi

: The target returns for the portfolio at the itn 
iteration;

 w: A column vector of asset weights;
 w1:n: Denoting the subvector containing ele-

ments 1 through n, assuming n is the number of 
risky assets and the risk-free asset is the (n +1)th 
element;

 n: Number of assets;
 m: Number of portfolios to generate to form CAL 

and the upper Efficient Frontier.
We define the iterative process as follows:
1. Set the range for the target returns:
                                Rmin = Rf. (18)

                          Rmax = max (R). (19)

                      
 (20)

2. Iterate to find the optimal weights for each 
target return:

For each  from 0 to m, do:

                      
Rpi 

= Rmin + i · step. (21)
3. Solve the optimization problem for each Rpi

:

             

 (22)
 

 
The result of each optimization will give us a po-

int on CAL and the upper Efficient Frontier, cha-
racterized by the pair (Rpi

, pi
), where pi

 is the mi-
nimum volatility corresponding to the return Rpi

.
The symbol T in the notation wT

1:n w1:n stands for 
the transpose of a vector or matrix. In the context 
of portfolio theory:
 w is a column vector representing the weights 

of different assets in the portfolio. If we have 
nassets, then w is an n  1 column vector.

  is the covariance matrix of the asset returns, 
which is an n  n square matrix. Each element 

   

 

 

  

 

: 1

0
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0, 0, {1, ... }

T
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T
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R w R
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
 min max .

R R
step

m

– 1,
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of  represents the covariance relationships bet-
ween the returns of the assets in the portfolio.
When we multiply wT

1:n w1:n we are effectively 
calculating the portfolio variance. Here’s how it 
breaks down:
 wT

1:n  is the matrix multiplication of the transpo-
se of the subvector wT

1:n with the covariance mat-
rix . This results in a 1  n vector where each 
element is the weighted sum of the cova riances 
of one asset with all other assets in the portfolio.

 Finally,  is a scalar value resulting from the dot 
product of the 1  n vector wT

1:n with the 1  n 
vector w1:n. This scalar is the portfolio varian ce, 
which represents the risk of the portfolio’s re-
turns.
The product RTw is the product of the vector of 

expected returns with the vector of weights, 
which results in the expected return of the port-
folio. The inequality RTw > Rpi

 ensures that the 
expected return of the portfolio is greater than or 
equal to a specified target return Rpi

.
In programming, specifically when using lib ra-

ries such as NumPy in Python, we often don’t exp-
licitly write the transpose for a one-dimensional 
array since the dot product operation inherently 
handles the orientation of the vectors correctly. 
However, in more formal mathematical notation, 
especially when documenting a model or within 
academic papers, the transpose is used to clarify 
that we’re performing a matrix multiplication that 
respects the dimensions of the vectors, i.e., a 1  n 
row vector multiplied by an n  1 column vec tor. 
This formal notation is important for mathem-
atical correctness and to avoid ambiguity in the 
re presentation of vector and matrix operations.

The operation 1Tw is a matrix multiplication of 
a 1  n row vector with an n  1 column vector, 
which results in a scalar value. This scalar value is 
the sum of all the elements of the vector w. So, 
when we write 1Tw = 1, we are stating that the sum 
of all the portfolio weights must equal 1, ensuring 
that the entire capital is fully allocated.

The constraint wi > 0, w0 > 0, i {1, …, n} is 
saying that every individual weight w of the port-
folio must be non-negative, for each asset i from 1 

to n and risk-free rate, ensuring that we’re not shor-
ting any assets and that the portfolio only con-
sists of long positions.

In the context of the paper, the Sequential Least 
Squares Programming (SLSQP) me thod is emp-
loyed to solve the portfolio optimi zation prob -
lem. It is an algorithm provided wi thin the SciPy 
library’s optimization module (scipy.optimize) for 
solving nonlinear optimization prob lems with 
both equality and inequality constraints.

The method iteratively solves a sequence of op-
timization subproblems. Each subproblem appro-
ximates the original nonlinear problem by a quad-
ratic programming (QP) problem. The method 
uses the concept of a Lagrangian function, which 
incorporates both the objective function to be mi-
nimized (or maximized) and the constraints.

The iterative process looks like this:
1. Quadratic Approximation. At each iteration, 

SLSQP approximates the objective function by a 
quadratic function and the constraints by linear 
functions. This approximation is based on the cur-
rent estimate of the solution and the derivatives 
(gradients) of the objective function and const-
raints with respect to the decision variables.

2. Solving Subproblems. The algorithm then 
solves a QP subproblem defined by the quadratic 
approximation of the objective function and the 
linear approximation of the constraints. The so-
lution to this subproblem provides a direction 
along which the algo rithm should move to imp-
rove the current estimate of the solution.

3. Line Search or Trust Region Step. After sol-
ving the quadratic subproblem, SLSQP either per-
forms a line search or uses a trust region approach 
to determine the step size. This step is crucial for 
ensuring that the new estimate improves upon the 
current estimate in terms of the objective func-
tion value while satisfying the constraints.

4. Update and Repeat. The solution estimate is 
updated based on the results of the line search or 
trust region step. The algorithm then re-evalua-
tes the objective function and constraints at the 
new point, updates the quadratic and linear app-
roximations, and solves a new QP subproblem.
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5. Convergence Check. After each iteration, 
SLSQP checks whether the solution has conver-
ged to an optimum. Convergence criteria typical ly 
involve the size of the step taken in the latest ite-
ration, the change in the objective function value, 
and the satisfaction of the constraints. If the cri-
teria are met, the algorithm stops; otherwise, it pro-
ceeds with another iteration.

SLSQP method is an optimization algorithm 
available within the SciPy library, a Python-ba sed 
ecosystem of open-source software for mathema-
tics, science, and engineering. Given its imple-
mentation in SciPy, researchers and practitioners 
have access to a robust and efficient tool for opti-
mization tasks without the necessity to explore 
the underlying mathematical intricacies of the 
optimization process, such as the manual applica-
tion of the method of Lagrange multipliers. The 
SLSQP method in SciPy abstracts this comple-
xity, automating the solution of the constrained 
optimization problem and thereby streamlining 
the computational process.

The application of this methodology in a re-
search paper involves using historical return data 
for the U.S. tech sector to populate the covari-

ance matrix and the expected return vector, then 
applying these equations to calculate the optimal 
portfolio weights and the corresponding risk-re-
turn characteristics. This would allow for a de-
tailed analysis of the investment opportunities 
within the U.S. tech sector under the mean-vari-
ance optimization framework.

Utilizing Python, this study systematically re-
trieves and processes asset data, focusing on U.S. 
technology sector stocks from the NASDAQ 100 
index and risk-free rate information, to construct 
efficient portfolios. By employing Python for da ta 
acquisition through Yahoo Finance API, we effi-
ciently gathered daily closing prices and risk-free 
rate data for the period between March 1, 2021, 
and March 1, 2024, identifying 98 stocks with 
complete historical records. 

The inclusion of major indexes — S&P 500, 
NASDAQ Composite, NASDAQ 100, Russell 2000, 
and Dow Jones Industrial Average — streamlines 
the analytical process by utilizing pre-calculated 
diversification, thereby serving as a foundational 
benchmark for asset allocation. As Myers, Allen, 
and Brealey articulate, astute investors maintain 
highly diversified portfolios, often beginning with 
the market itself as their foundational portfo-
lio [6, p. 185]. This approach underscores the im-
portance of incorporating a broad market index 
as a strategic basis for portfolio diversification. 

The results of the risk-return analysis, summa-
rized in Table 1, present the daily and annualized 
risk-return metrics for 11 efficient portfolios. The-
se include the Sharpe ratios, illustrating the tra de-
offs between risk and return at varying portfolio 
configurations.

We observe based on the Table 1 a systematic 
prog ression in both the expected daily return (Rp) 
and the associated daily risk (σ), from Portfolio 1 
to Portfolio 11. To facilitate a meaningful compa ri-
son with established benchmarks, the dai ly figu res 
have been annualized using standard formulas, a ne-
cessary conversion given that benchmark perfor-
mances are typically reported on an annual basis. 

The annualized data reveals that as we move 
from Portfolio 1 to Portfolio 11, there is an increa-

Table 1. Risk-Return Calculation Results 
of 11 Efficient Portfolios

Port folio
Daily Yearly

, % Rp, % , % Rp, % Sharpe ratio

1 0 0.01 0 2.6 —

2 0.002 0.03 3.5 8.5 1.70

3 0.004 0.05 6.9 14.7 1.74

4 0.007 0.08 10.4 21.3 1.80

5 0.009 0.10 13.9 28.2 1.85

6 0.011 0.12 17.4 35.6 1.90

7 0.013 0.14 21.4 43.3 1.90

8 0.017 0.17 27.2 51.5 1.80

9 0.022 0.19 34.5 60.2 1.67

10 0.027 0.21 43.0 69.4 1.55

11 0.033 0.23 52.7 79.1 1.45
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se in both the expected annual return and annual 
risk, reflecting the fundamental trade-off at the 
heart of Modern Portfolio Theory — higher re-
turns are accompanied by higher risk. Interes-
tingly, the Shar pe ratio, which measures the risk-
adjusted return, peaks at Portfolio 7 and then 
begins to dec line. This suggests that Portfolio 7 
represent the highest optimal balance between 
risk and return which also represent the tangency 
portfolio T.

When we juxtapose the results of Table 1 aga inst 
the indexed performances in Table 2, we extend 
our analysis over two distinct time horizons — 
3 years and 10 years. The 3-year and 10-year per-
formances refer to the average annual returns and 
risks over those respective periods. Here, we con-
sider the risk (σ), expected return (R), and the 
Sharpe ratio of major indexes (Table 2).

The 3-year performance of benchmarks shows 
they carry higher risk and, in some cases, lower 
re turns than efficient portfolios. Particularly, the 
Rus sell 2000 index experienced negative returns, 
evident in its negative Sharpe ratio. Over 10 years, 
however, benchmarks show improved returns and 
Sharpe ratios, suggesting better long-term risk-
adjusted performance. This comparison confirms 
the strength of the MVO-based portfolio const-
ruction in achieving favorable risk-adjusted re-
turns against traditional market benchmarks pre-
sented in Fig. 2.

The CAL is constructed from the risk-free rate 
through Portfolio 7, extending upwards and ser-
ving as a benchmark for efficient investing. The 
upper Efficient Frontier is formed by the curve 
connecting the series of portfolio options above 
the tangency point, highlighting the potential for 
higher returns at increased levels of risk beyond 
the best trade-off.

Analyzing the weight distribution across the 
portfolios provides insight into the asset alloca-
tion strategy and how it aligns with the Capi-
tal Allocation Line and the upper Efficient Fron-
tier (Table 3). If some stocks always have a weight 
of 0%, they are excluded from the table to sa-
ve space.

Table 3 intriguingly shows the weight distri-
bution across 11 efficient portfolios as percen ta-
ges of the total portfolio, none of which incorpo-
rate the five indexes initially considered in the 
calculations. This exclusion underscores the in-
dexes’ risk-return profiles, which the algorithm 
dee med unsuitable for the portfolios it deemed 
most efficient. Despite analyzing 98 individual 
stocks, at most only nine are represented in any 
given efficient portfolio, emphasizing the selecti-
ve nature of the optimization process and the cri-
tical role of asset performance and correlation in 
constructing an optimal portfolio.

The progression from Portfolio 1 through Port -
folio 11 illustrates a dynamic allocation strategy, 
evolving from a risk-averse stance heavily weigh  ted 

Table 2. Risk-Return Calculation Results 
of 5 Indexed over the Last 3 and 10 Years

Index

3-year 10-year

, % R, % Sharpe 
ratio , % R, % Sharpe 

ratio

S&P 500 17.4 9.3 0.39 17.8 10.7 0.53

NASDAQ 
Composite 23.3 5.8 0.14 21.1 14.2 0.61

Russell 2000 23.4 –3.3 –0.25 22.8   5.8 0.19

Dow Jones IA 14.8 7.3 0.32 17.5   9.2 0.45

NASDAQ 100 23.8 10.8 0.34 21.8 17.3 0.73

Fig. 2. The Capital Allocation Line and the upper Efficient 
Frontier of 11 efficient portfolios
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in the risk-free asset (Rf) to a concentrated invest-
ment in a single equity (NVDA) by Portfolio 11. 

Initially, Portfolio 2 displays a diversification 
among several equities with substantial allocati on 
to the risk-free asset, suggesting a conservative 
investment approach. As we advance to Port fo-
lio 7, we observe a significant shift towards equi-
ties like NVDA and ORLY, reflecting an increased 
risk appetite.

Strikingly, NVDA becomes the predominant 
hol ding in the latter portfolios, culminating in a 
sing le-asset strategy in Portfolio 11. This shift 
un  ders co  res the model’s recognition of NVDA’s 
perfor man ce within the analyzed period, positio-
ning it as a high-impact asset within these opti-
mized portfoli os.

The table not only serves to exemplify the 
practical application of MVO in determining as-
set allocation but also showcases the range of in-
vestment strategies — from highly diversified to 
highly focused — that can be constructed under 
the MVO framework. 

Modern Portfolio Theory (MPT), developed 
by Harry Markowitz in 1952, with further contri-
butions by James Tobin and William Sharpe, pro-
vides a quantitative framework for assembling a 
diversified investment portfolio that maximizes 

expected return for a given level of risk. By con-
sidering the covariances between assets alongside 
their individual expected returns and variances, 
we have delineated the efficient frontier — show-
casing portfolios that yield the highest expected 
return for a predefined level of risk.

The use of geometric mean in evaluating ex-
pected returns enhances the model’s sensitivi ty to 
daily return fluctuations, thereby enriching long-
term forecast accuracy and ensuring com pa rabi-
lity across portfolios. This method effective ly cap-
tures the compound nature of investment returns.

Through the incorporation of a risk-free asset, 
as posited by Tobin’s Separation Theorem, we ha ve 
simplified the construction of the efficient fron-
tier and established the Capital Allocation Line 
and the upper Efficient Frontier, facilitating in-
vestor decisions on the optimal trade-off between 
risk and return.

Leveraging Python’s computational capabili-
ties, including optimization libraries like SciPy’s 
SLSQP method, we have significantly streamli-
ned the process of data retrieval, portfolio statis-
tics calculation, and the critical iterative optimi-
zation process. This computational proficiency, in 
tandem with MVO’s theoretical rigor, empowers 
investors to construct portfolios that are well-di-

Table 3. The Weight Distribution of 11 Efficient Portfolios, %

№ AVGO COST FANG NVDA ORLY PANW PCAR REGN VRTX Rf

1 — — — — — — — — —   100

2 0.6   2.4   2.5 1.8   6.6 0.2 0.7   2.7 1.7 80.7

3 1.1   4.3   4.9 3.8 13.9 0.1 1.5   5.7 3.2 61.5

4 0.9   8.0   7.6 5.8 20.0 0.2 3.3   8.0 4.0 42.3

5 1.3 11.5   9.4 7.9 26.1 0.7 4.1 10.2 5.6 23.2

6 2.3 14.9 11.5 8.4 30.9 0.6 5.8 14.5 9.9   1.3

7 — 10.9 15.3 22.7 37.9 — — 10.2 3.0 —

8 —   1.0 16.7 39.3 41.3 — —   1.7 — —

9 — — 18.0 58.0 24.0 — — — — —

10 — — 18.6 77.2   4.3 — — — — —

11 — — —    100 — — — — — —
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versified and primed to potentially deliver supe-
rior risk-adjusted returns, particularly within the 
volatile U.S. technology sector.

In conclusion, the integration of computation-
al advancements with MVO not only substantia-

tes its application in current market conditions 
but also equips investors with the methodology 
to execute rapid, sophisticated portfolio optimi-
zations — thus, systematically achieving efficient 
asset allocation.
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ОПТИМІЗАЦІЯ ЗА ДИСПЕРСІЄЮ ТА СЕРЕДНІМ ЗНАЧЕННЯМ: 
МОДЕЛЮВАННЯ ОПТИМАЛЬНОГО ІНВЕСТИЦІЙНОГО ПОРТФЕЛЯ 
В ТЕХНОЛОГІЧНОМУ СЕКТОРІ США 

Вступ. Сучасна портфельна теорія (СПТ) забезпечує кількісну основу для прийняття обґрунтованих інвестиційних 
рі шень. Нестабільний та непередбачуваний технологічний сектор США ставить під сумнів традиційні інвестиційні 
підходи, що робить необхідним дослідження методів, які краще враховують його унікальні співвідношення ризику та 
дохідності. 
Проблематика. Традиційні інвестиційні стратегії часто не здатні адекватно врахувати динамічну природу техноло-

гічного ринку, оскільки вони покладаються на обмежену кількість даних і неефективні процеси розрахунків, що приз-
водить до неоптимального розподілу активів. Одним із прогресивних методів вдосконалення стратегій формування 
портфеля, адаптованих до технологічного ринку, є метод оптимізації за дисперсією та середнім значення (MVO). 
Мета. Оптимізація MVO для формування оптимальних портфелів у технологічному секторі США з використан-

ням внесків СПТ, оптимізаційних технік Шарпа та моделі розподілу активів Тобіна.
Матеріали й методи. Використовуючи історичні дані про акції, MVO реалізовано за допомогою Python для фор-

мування портфелів, які включають безризиковий актив для розрахунку лінії розподілу капіталу (CAL) та верхньої 
ефективної межі. Геометричне середнє використано для оцінки очікуваної дохідності, що підвищує довгострокову 
прогнозованість і порівнянність портфелів, тоді як щоденні дохідності підвищують чутливість моделі.
Результати. Оптимізовані портфелі продемонстрували вищі коефіцієнти Шарпа та кращі характеристики ризику 

та дохідності, перевершуючи бенчмарки завдяки ефективним обчисленням.
Висновки. MVO є ефективним інструментом для інвестування в технологічному секторі, дозволяючи проводити 

інформований вибір активів і формування портфеля. Дослідження також підкреслює важливість інтеграції ітератив-
них процесів розрахунків та сучасних обчислювальних технік для адаптації традиційних інвестиційних стратегій до 
великих обсягів даних у сучасних ринкових умовах.

Ключові слова: оптимізація, лінія розподілу капіталу, ефективний кордон, програмування на Python.




