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STATEMENT OF THE PROBLEM

The creation of methods for predicting the op-
erational and emergency states of launch equip-
ment under restarts includes the development of 
calculation methods and approaches for deter-
mining the temperature and stress strain state 
(SSS) of critical structural elements of equipment 
under restarts and for estimating their residual 
service life. It is assumed that for estimating the 
residual service life of the structure it is necessary 
to do this for its elements undergoing the heaviest 
thermal and power loads under restarts. It is nec-
essary to determine the temperature distribution 
in the elements and proceeding from the constitu-
tive equations describing the repeated thermo-
plastic strains of material of these elements to for-

mulate respective boundary problems, to create or 
to improve known methods and software, to cal-
culate SSS, to estimate strength of elements, and 
to prove the reliability of results.

In [1—7], the methods for solving the thermal 
plasticity boundary problems of the rotation shells 
and bodies strained beyond the elasticity limits 
using numerical integration, methods of finite dif-
ferences and finite elements and software [8—10], 
which enable determining the temperature field 
and elastic-plastic SSS for the rotation bodies and 
shells according to various theories of plasticity. 
However, they are not suitable for estimating the 
strength of specific elements of launch equipment, 
since the existing versions of software are not de-
signed for numerical study of intensive thermal 
and power loads acing on these elements under 
short-term combined effect of thermal radiation, 
convective heat transfer, and heat flux during the 
first rocket launch and restarts. In addition, some 
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critical elements of launch equipment have a 
plate-like shape. So, to calculate the SSS of ele-
ments, it is necessary to have methods that take 
into account the specific physical, mechanical, 
and geometrical factors. In this regard, for the 
purpose of this research, available techniques for 
solving thermal plasticity problems of rotation 
bodies and shells and related software have been 
improved in terms of their application to the cal-
culation of launch equipment elements. To calcu-
late the plate-like elements, the ANSYS licensed 
software package [11] granted by Pivdenne design 
office as part of the agreement on research and 
technical cooperation has been used.

The subject of this research is a launch pad 
whose dimensions, material properties, and con-
ditions of thermal and power impact on its indi-
vidual elements are provided by Pivdenne 
Design Office. For each of the pad critical ele-
ments, it is necessary to formulate the respec-
tive thermal plasticity problem and, having 
solved it, to conclude on the strength of this el-
ement under restarts.

GENERAL STATEMENT OF THE PROBLEM 

OF BODY’S SSS UNDER HEATING AND LOADING

In general, any structural element is a solid de-
formable body having a certain volume and lim-
ited by given surface, which at the initial time t0 
has a natural stress-free state, at the initial tem-
perature T0. Then, the body is subjected to heat-
ing and loading by the external volume forces 
acting on each elementary volume and by the sur-
face forces acting on the part of body surface. The 
other parts of the body can be fixed.

The following assumptions are used:
1) The body is heated and loaded so slowly 

that the loading can be seen as a set of equilibrium 
states, with the body deformation not entailing 
any change in its temperature; hence, the loading 
is deemed a quasi-static process;

2) The action of external loads and uneven 
heating causes small deformations of the ele-
ments; the element material before the loading 
is isotropic; it is deformed both within and be-

yond the elasticity limits, with the creep strain 
being negligible as compared with the elastic 
and plastic components.

3) In the area of inelastic strain, relief is possible 
with appearance of secondary plastic strains, with 
the material having the ideal Bauschinger effect.

To solve the problem of SSS under heating and 
loading, it is necessary to choose a coordinate 
system depending on the body shape, as well as to 
set its geometrical parameters, thermal and me-
chanical properties of the material and conditions 
of heat exchange with the environment. Heating 
and loading should be divided into several stages, 
so that the time intervals separating the stages 
coincide with the time of transition from the ac-
tive stress to the relief and vice versa. At the end 
of any stage of load, on the basis of given informa-
tion it is necessary to determine the temperature 
distribution in the body, three components of the 
displacement vector at every point, six compo-
nents of the strain tensor, and six components of 
the stress tensor, i.e. 16 unknown functions to-
tally. To determine the temperature, the heat con-
duction problem should be solved for given initial 
and boundary conditions.

Having determined the temperature distribu-
tion in the body at an arbitrary time and set the 
appropriate loads and grip conditions, one can 
find the components of displacement vector, as 
well as of strain and stress tensors, which meet 
static, geometric, and constitutive equations 
and specified boundary conditions. The static 
equations are three equilibrium state differen-
tial equations [2, 5]; the geometric equations are 
six Cauchy relations between the components of 
the strain tensor and the displacement vector [2, 
5]; and six constitutive equations form connec-
tion between the components of the stress σ

ij (i, 
j = 1, 2, 3) and the strain εij (i, j = 1, 2, 3). tensors. 
The constitutive equations are the relations of 
the strain theory for trajectories of small curva-
ture linearized by the method of additional 
stresses [1—5].

The estimation of thermoplastic SSS of the 
structural element is solved by iteration approx-
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imations followed by estimating its strength. If 
after the first load, SSS of structural element 
does not reach the fracture level, it is necessary 
to calculate (for example, on the basis of varying 
hysteresis loop of plastic strain or amplitude of 
strain) how many repeated loads this element 
can endure.

JUSTIFICATION OF STUDYING THE THERMAL 

ELASTIC AND PLASTIC STATES OF PLATE STRUCTURES 

USING SOLUTIONS FOR AXISYMMETRIC BODIES

Usually, the launch equipment has a sophisti-
cated geometry and structure. This fact compli-
cates their numerical study. However, in some 
cases, the SSS of structural elements can be esti-
mated using the results obtained for the bodies of 
simpler geometry, for example, the problem of un-
even heating in the case of the thin-walled cylin-
der and the long box-type structure both made of 
the same material. The width of the box wall is 
assumed to be equal to the external diameter of 
the cylinder, with the thickness of their walls be-
ing identical (Fig. 1). The initial and boundary 
conditions on the outer and inner surfaces of both 
bodies are considered identical. For the calcula-
tions, the reference point of the coordinate sys-
tem is placed in the center of the box. The prob-
lem of thermoplastic deformation of thin-walled 
cylinder is solved using the axisymmetric shell 
theory in the formulation [6] and the ANSYS fi-
nite element software system [11] that applies 
also to solving the problem of SSS of box-type 
structure under planar strain. As a result of calcu-
lations, the temperature distributions over the 
thickness of the cylinder and the box-type struc-
ture, which are obtained using different methods 
have been found to be identical. Also, it has been 
established that in the intersections correspond-
ing to the middle of box walls, there is a good 
agreement of the stresses having the same direc-
tion in the box and in the cylinder. This means 
that the method for solving the problem thermal 
plasticity under repeated loads can be developed 
and tested in the axisymmetric formulation and 
then be used for the plate structures.

METHOD FOR STUDYING 

TEMPERATURE FIELDS AT RESTARTS 

The launch pad is a box-type structure whose 
elements are made of isotropic materials. As a re-
sult of restarts, these elements undergo intensive 
heating and subsequent cooling, with significant 
strains appearing in the material of elements. 
These strains causes anisotropy of materials that 
initially are isotropic. Therefore, it is expedient 
to study the unsteady temperature fields in ani-
sotropic elements.

For determining the temperature field in ani-
sotropic elements the differential equation of 
heat conductivity [12] is used:

 
→

−=
∂
∂ pdiv

t
Tcr , gradTp l−=

→
, (1)

where T is temperature, t is time, 
→
p  is heat flux 

vector, c is specific heat capacity of material, ρ — 
density of material, λ = λ(λij) is heat conductivity 
coefficient.

It is assumed that in the body, there are no heat 
sources, and heat emission as a result of deforma-
tions can be neglected.

The differential equation (1) can be integrated 
at the initial and at the boundary conditions:

 oTT = , ott = , (2)

Fig. 1. Intersection of box-like and cylindrical structures

ρ λ
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→

⋅n
→→→

+−= pnTp )( qa . (3)

The last condition is set on the surface limiting 
the body. Here, 

→
n  is external normal to the sur-

face limiting the body, α is heat exchange coeffi-
cient, θ is temperature of environment, and 

→
p  is 

external heat flux.
The expression (3) is a condition of convective 

heat exchange with environment according to the 
Newton law, at given external heat flux. In the 
general case, the components of heat conductivity 
coefficient tensor are temperature functions. The 
condition (3) covers three types of boundary con-
ditions of unsteady heat conductivity problem. At 
α → ∞, the condition (3) corresponds to given 
temperature on the body surface; at α = 0, it is re-
ferred to given heat flux on the body surface. This 
expression can be used in the case of heating the 
body according to the Stefan—Boltzmann law, for 
the radiant heat exchange between two surfaces. 
In the expression (3) α = α

н + αсб, where the first 
additive corresponds to the heat exchange accord-
ing to the Newton law, whereas the second one is 
related to the heating in accordance with the 
Stefan-Boltzmann law.

Despite the fact that the launch pad is a square 
box-like structure, when determining the tem-
perature in its elements can be reduced to a non-
axisymmetric heat conduction problem for the 
rotation body under heating conditions varying 
in the circumferential direction. In this case, the 
correlation of boundary points can be found us-
ing conformal transformation of the square to 
the circle. Insofar as the initially isotropic mate-
rial, after repeated starts, can become an ortho-
tropic one, the variation heat equation for cylin-
drical rotation body made of orthotropic mate-
rial [12] was used. Solving the 3D heat conduc-
tivity problem directly using 3D finite elements 
is time-consuming and inefficient procedure for 
the rotation bodies. The use of semi-analytical 
finite element method can significantly increase 
its effectiveness [2, 4, 5]. This method reduces 
the original 3D problem to a series of 2D prob-
lems in the meridian intersection of the body. To 

this end, the solution is sought in the form of 
trigonometric series in the circumferential direc-
tion. In this case, the 3D heat conduction prob-
lem is reduced to 2D variation problems with 
respect to unknown coefficients of the series. 
Detailed calculations were made in [5]. Since the 
heat conductivity coefficients depend on tem-
perature, the temperature problem is a nonlinear 
one. Its linearization is based on the method of 
iteration approximations.

As an example, an unsteady temperature field 
of long cylinder having an inner radius of 2.94 m 
and a thickness of 0.04 m has been studied under 
time-variable convective heat exchange with the 
environment and heat flux on its inner surface. 
The calculations have been made for four options 
of boundary conditions of heating: a) by convec-
tive heat transfer and given heat flux; b) only by 
given convective heat transfer; c) only by heat 
transfer according to the Stefan-Boltzmann law; 
d) by convective heat transfer according to the 
Newton law and heat exchange governed by the 
Stefan-Boltzmann law.

The analysis of calculation results has showed 
that the maximum temperature on the body sur-
face corresponds to that at which the material 
can undergo structural transformations from iso-
tropic to anisotropic one.

To determine the unsteady temperature fields 
of thin-walled structural elements in the form of 
laminated shells of rotation, a method for solving 
the heat conductivity problem at a given heat 
flux, under convection and radiation heating or 
their combination has been designed (unlike re-
searches [6, 7] which take into account only the 
boundary conditions of convective heat exchange 
with the environment). The method of finite dif-
ferences and explicit difference scheme in terms 
of time have been used. The method has been 
showed to be effective and to give a good corre-
spondence between the results of calculations 
based thereon and made by ANSYS. It should be 
noted that this method can be used to determine 
approximate temperature of plate structural ele-
ments for the large-radius cylindrical shells.

α θ
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METHOD FOR QUANTIFYING 

THERMOELASTIC-PLASTIC STRAIN STRESS 

STATE OF STRUCTURAL ELEMENTS 

UNDER REPEATED LOAD

Having obtained temperature distribution 
within the body simulating an arbitrary struc-
tural element, as a result of solving the heat con-
ductivity problem, it is necessary to find 15 un-
known functions describing SSS of the body at 
the end of any stage of load. For this purpose, as 
mentioned above, the system of equilibrium sys-
tem equations, geometrical ratios, and constitu-
tive equations should be used. The constitutive 
equations should be written using the method of 
additional stresses in the theory of strains along 
the trajectories of small curvature as the Hook’s 
law with additional members [2—5]:

 ( ) ( )
02 2 d

ij ij T ij ijG K G Ks e e e d s⎡ ⎤= + − − −⎣ ⎦ ,
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Where E, G are elasticity modulus and shear 
modulus, respectively, ν, αT are Poisson ratio and 
linear thermal expansion coefficient; δij is Kro neck-
er’s delta function; Δk is increase in the respective 
value for the k-th stage; ( ) ( )p

ij
p

ije e=  are plastic com-
ponents of strain tensor elements, which at the 
M-th stage, are equal to the sum of increases in 
these components for M stages;
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S is intensity of tangential strains, and *
pΓ  is in-

tensity of accumulated plastic shear strain. In (6), 
the angle brackets mean average value for the re-
spective stage. In (5), the additional stresses σij

(d) 
are deemed known and obtained from solving the 
problem at the previous stages and approxima-

tions. Their expressions contain increases in plas-
tic strain components Δkeij

(p), which should be de-
fined more accurately in the iteration approxima-
tions. The increase Δkeij

(p) is calculated assuming 
the dependence

 ( )TFS ,Γ=  (8)
between the intensity of tangential strains S (7), 
intensity of shear strains Г
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and temperature T. For more accurate definition 
of dependence (8) σ ∼ ε diagrams (σ is stress, ε is 
elongation of the sample) obtained from experi-
ments on stretching the cylindrical samples at 
various fixed values of temperature, which were 
made at loading rates not affecting the shape of σ 
∼ ε. diagrams. Transition from σ and ε to S and Г 
is made according to known formulas [1—5]. For 
interim temperature T, the dependence (8) is 
found by linear interpolation. When the second-
ary plastic strains appear, the dependence

 ( )TFS p ,, )1(
1 ΓΓ=  (10)

is built using (8), intensity of accumulated plas-
tic shear strains at the moment of upload )1(

pΓ , and 
respective value of ( )TFS ,1

)1( Γ=  assuming that 
Г1 = p

)1(Γ
 
+ + ( ) GS 2/1 . For uploading in the area of 

secondary plastic strains and for the next (re-
peated) load the dependence

 ( )TFS p ,, )2(
2 ΓΓ=  (11)

is built using (8), intensities of accumulated sec-
ondary plastic shear strains )2(

pΓ  and respective 
values of S(2) = F1 (Г2, p

)1(Γ , Т). The dependences 
(10) and (11) are built using conditions for the 
ideal Bauschinger effect [13]
 ( ) ( )

TTT SSSSS 2)2(21)1( =+=+ ,

where ST, ( )1
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TS  are intensities of tangential 
stresses corresponding to yield limits of material 
in (8), (10), and (11). for further changes in the 
load direction are built [14]. 
The constitutive equations (4), the balance equa-
tions, and the Cauchy relations form a system of 

δσ ε ε ε σ

σ

ij ij iiijijij

ij ij

ijij

ii

ij ij

ν
ν

ε ε ε α

ε

ij

σ σ σ σδ

ij ij ij ij ij
δε ε

(Г,

(Г,

(Г,



22 ISSN 2409-9066. Sci. innov. 2015, 11(5)

Shevchenko, Yu.N., Andrushko, N.F., Babeshko, M.Ye., et al.

15 equations to be solved under the given bound-
ary conditions. The solution system is formulated 
in terms of shifts, stresses or in a mixed form with 
respective boundary conditions [2, 5]. In each of 
these cases, a nonlinear boundary problem is ob-
tained. Its solution at each stage of load is found 
by iteration approximations. At the first phase of 
the load, the problem of thermal elasticity is 
solved, while at the next stages, one deals with 
the problem of thermal plasticity to solve which, 
during each approximation, it is necessary to use 
the SSS components obtained at the previous 
stage and in the previous approximation. This 
common approach to determining SSS of the 
body simulating a particular structural element is 
realized using different coordinate systems, de-
pending on the body shape and methods used for 
solving systems of differential equations.
The methods used for massive rotating bodies are 
described in detail in [2, 4, 5], while the software 
for solving thermal plasticity boundary problems 
in variation formulation using the finite element 
method is is given in [8, 9]. For the shell struc-
tures of arbitrary shape, an algorithm for solving 
this problem in the variation formulation using 
the finite difference method is proposed in [1]. 
For the thin shells, within the Kirchhoff-Love 
theory [15], in [1—3, 6] there are detailed de-
scriptions of the methods for solving thermal 
plasticity boundary problems using the orthogo-
nalization approach [16] for which the relevant 
software has been developed [8, 10 ].
In this research, the above mentioned methods 
and the appropriate software have been extended 
to the repeated load and to the assessment the 
strength of structural elements. When assessing 
the strength, it is assumed that for repeated stress 
of the body, the maximum temperature and power 
factors remain fixed. In this case, the deformation 
is characterized by varying width of the plastic 
hysteresis loop and by plastic strain accumulated.
In the absence of creep, there are two cases of de-
struction, the quasi-static fracture and the fatigue 
distress [17]. The fatigue distress is accompanied 
by fatigue cracks and small plastic strains. The 

quasi-static fracture is caused by the accumula-
tion of plastic strains corresponding to single 
static load that causes failure of material. This 
kind of fracture is typical for the materials that 
are cyclically stable and prone to the accumula-
tion of plastic strains. The Sdobyrev criteria [18] 
are used for the assessment of quasi-static frac-
ture, whereas to estimate the low-cycle fatigue it 
is necessary to apply the Coffin-Manson-type cri-
teria relating the amplitude of total or plastic 
strain with the number of cycles before failure.
For example, the SSS of thin cylindrical shell was 
considered under the action of axial force, inter-
nal pressure, and temperature, which increase 
and, having reached their maximum values, de-
crease to the zero load and the initial tempera-
ture. In the proposed method, SSS of the shell 
was determined under three-time repeated load. 
The effectiveness of iterations and the accuracy 
of results have been confirmed by comparing the 
exact solution of this problem with the solution 
obtained using the ANSYS complex.

STUDY OF SSS AND ESTIMATION 

OF RESIDUAL SERVICE LIFE OF PLATE ELEMENTS 

OF LAUNCHING EQUIPMENT UNDER REPEATED 

NON-ISOTHERMAL LOAD

Let determine SSS and estimate the residual 
service life of plate element having a constant 
thickness  used for the protection of electronic 
equipment during the rocket launch. Let do this 
with the help of ANSYS software. 

During the rocket launch the plate undergoes 
an intense thermal mechanical load. The analysis 
of input data has showed that the mechanical 
load on the plate can be neglected as compared 
with the thermal one. Therefore, hereafter, the re-
search deals with thermoelastic deformation of 
the plate under cyclical thermal load.

The geometry of a plate quarter with a grid 
consisting of finite number of elements is given in 
Fig. 2. At the crossing x = 0 and y = 0 the sym-
metry conditions are set. Beyond the contour, the 
plate is deemed thermally insulated. On the inner 
surface z = 0, the conditions of convective heat 
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exchange with environment having a tempera-
ture of Тср = 308 К. are established. Heat exchange 
coefficient on this surface is α = 35 W/m2 ⋅ К. 
Initial temperature of the plate is Т0 = 308 К. The 
load cycle consists of heating and cooling proc-
esses. At the first stage, the outer surface z = 
= 0.03 m is heating during 13.2 s in accordance 
with boundary condition (3), where α = αн. 
Temperature of external environment, heat ex-
change coefficient, and specific radiant heat flux 
vary with time reaching their maximums at 
2.8 s  ≤ t ≤ 3.2s. Having been heated the plate is 
cooling down to the initial temperature Т0 during 
6000 s, with heat exchange conditions on the sur-
face z = 0.03 m being identical to those on the sur-
face z = 0. The plate is made of 10ХСНД steel. 
This material is deemed to harden linearly with 
ideal Bauschinger effect. 

The calculations have showed that while heat-
ing and cooling the plate, the temperature T and 
stress σ

ij distributions vary insignificantly at the 
crossings parallel to Oxy plane. The shear stress-
es can be neglected as compared with the normal 
ones, while stresses σxx and σyy differ slightly 
from each other and exceed stress σzz by an order 
of magnitude. It has been established that being 
heated during 2 s the plate warms up a little bit, 
whereas at t = 2.8 s significant temperature gra-
dients appear and cause compressive stresses 
near the plate surface. As the heating rate de-
creases, temperature is distributed uniformly 
across the plate thickness, with the stresses re-
versing their sign due to a plastic deformation in 
the area of maximum temperature gradients, 
neat the plate surface.

Some results of calculations are showed in 
Fig.3. In Figs 3 а and b, one can see temperature 
T dependence with time at the point P0 with co-
ordinates x = y = 0, z = 0.03 m. Fig. 3, а shows 
temperature dependence for 5 cycles of heating 
and cooling; Fig. 3, b illustrates change in tem-
perature during heating for 1st and 2nd cycles. 
One can see that after the cooling, temperature 
reaches its initial value T0, with the heating for 
different cycles varying insignificantly. In Fig. 3, 

c, σxx stress distribution is given at the point P0 
during the heating for 1st, 2nd, and 5th cycles. Figs. 
3, b and c show that stresses σxx reach their max-
imums at the moment of maximum warm-up of 
the plate. Having compared stresses at the end 
of heating of the 1st cycle and at the beginning of 
the 2nd and 5th cycles, one can see that during the 
cooling the stresses do not vary materially. Fig. 
3, d features dependence sign(I3(Dσ))S ∼ Г at the 
point P0 for 5 cycles of load (intensity of shear 
stresses S multiplied by sign of the 3rd stress de-
viator I3(Dσ) for determining the sign of load). 
As one can see from Fig. 3, d, the hysteresis loop 
is stabilized at the 5th load cycle, with the ampli-
tude of total strain being Δε = 2/√3 ΔГ ∼ 0.34 %. 
The residual life of this structure under repeated 
thermal load is estimated using the Coffin-
Manson type fatigue criterion [19]:

 m n ÂN A D
E
s

e
⎛ ⎞

Δ = +⎜ ⎟⎜ ⎟
⎝ ⎠

, (12)

where Δε is amplitude of total strain; N is number 
of cycles before failure; D, A, n, m are constants 
depending on material properties. The properties 
of material in (12) correspond to maximum tem-
perature of the cycle and are taken accordingly to 
the lower estimate of yielding steel durability [2]. 
The number of cycles before failure of the struc-
ture under consideration has been established to 
be N ≥ 3000. To estimate the residual service life 
of this structure more accurately is impossible 
unless reliable data on cyclical plastic deforma-

Fig. 2. Geometry and finite-element grid of the plate

ε
σΒ
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tion and thermal fatigue strength of the material 
used are available. The detailed calculations are 
given in [21].

CONCLUSIONS

1. A mathematical model has been proposed for 
studying thermoelastic plastic SSS and strength 
of launch pad elements. The model enables esti-
mating the residual service life of the structure. 

2. A general statement of the problem has been 
formulated. A method for estimating the strength 
and residual service life of the structure consist-
ing of many elements of various geometry under 
repeated power and thermal loading has been 

proposed. The estimate of strength and residual 
service life is based on computation of tempera-
ture and SSS of the most stressed members. For 
this purpose, the existing methods and software 
for computing the temperature fields of thin- and 
thick-walled rotation bodies have been improved, 
including by solving non-steady heat conductiv-
ity problem with actual modes of heating taken 
into account due to formulating respective 
boundary conditions. 

3. The existing methods and software for solv-
ing the rotation body thermoelasticity problem 
have been generalized by developing an effective 

Fig. 3. Temperature distribution with time (а, b) and SSS (c, d) of the plate under repeated heating
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algorithm for specifying correlations between the 
second invariants of stress and strain deviators 
under variable load with secondary plastic defor-
mations and ideal Bauschinger effect taken into 
consideration.

4. The results of the study of launch pad plate 
elements have been given as an example of appli-
cation of the method for estimating the strength 
and residual service life of the structure. The re-
sults of computation of temperature field and 
SSS have showed for after the fifth launch the 
SSS components do not change and the structure 
endures further launches.

5. The number of launches before failure has 
been estimated. This estimate is fair under fixed 
thermoelastic load on launching equipment pro-
vided the mechanical properties of material are 
stable in the course of operation. 

It should be noted that the obtained results are 
approximate since the calculations are made on 
the basis of input data on material properties tak-
en from available literature, which roughly cor-
respond to the actual properties of material. The 
strength of launch pad elements can be accurately 
estimated using this method provided the dia-
grams of material cyclic deformations obtained 
after each launch of the booster are available.
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МЕТОДИКА ПРОГНОЗУВАННЯ 
ЕКСПЛУАТАЦІЙНОГО І ГРАНИЧНОГО СТАНУ 

ВІДПОВІДАЛЬНИХ СИСТЕМ РАКЕТНОЇ 
ТЕХНІКИ ПРИ ПОВТОРНИХ ТЕРМОСИЛОВИХ 

НАВАНТАЖЕННЯХ

Запропоновано математичну модель для дослідження 
термопружнопластичного напружено-деформованого 
стану та міцності систем ракетної техніки при повторних 
пусках, яка дозволяє оцінити ресурс конструкції. Вико-
ристано рівняння теплопровідності та визначальні рів-
няння термопластичності для процесів повторного 
пружнопластичного деформування ізотропних матеріа-
лів вздовж траєкторій малої кривизни, критерії міцності 
та малоциклової втоми, чисельні методи розв’язання 
крайових задач теплопровідності та термопластичності, 
а також відповідні комп’ютерні програми. 

К л ю ч о в і  с л о в а: математична модель, елемент кон-
струкції, процес термопружнопластичного деформуван-
ня, повторне навантаження, критерій міцності, критерій 
малоциклової втоми.
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МЕТОДИКА ПРОГНОЗИРОВАНИЯ 
ЭКСПЛУАТАЦИОННОГО И ПРЕДЕЛЬНОГО
СОСТОЯНИЯ ОТВЕТСТВЕННЫХ СИСТЕМ
РАКЕТНОЙ ТЕХНИКИ ПРИ ПОВТОРНЫХ 

ТЕРМОСИЛОВЫХ НАГРУЖЕНИЯХ

Предложена математическая модель для исследования 
термоупруго-пластического напряженно деформированно-
го состояния и прочности систем ракетной техники при пов-
торних пусках, позволяющая оценить ресурс конструкции. 
Использованы уравнение теплопроводности и определяю-
щие уравнения термопластичности для процессов повтор-
ного упруго пластического деформирования изотропных 
материалов по траекториям малой кривизны, критерии про-
чности и малоцикловой усталости, численные методы реше-
ния краевых задач теплопроводности и термопластичности 
и соответствующие компьютерные программы. 

К л ю ч е в ы е  с л о в а: математическая модель, элемент 
конструкции, процесс термоупруго-пластического дефор-
мирования, повторное нагружение, критерий прочности, 
критерий малоцикловой усталости.
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