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PREDICTION OF OPERATIONAL AND EMERGENCY STATES
OF ROCKET EQUIPMENT CRITICAL SYSTEMS UNDER REPEATED
THERMAL AND POWER LOAD

A mathematical model for studying the thermal elastic and plastic stress-strain state and the strength of the rocket
equipment systems at restarts has been proposed using the heat conductivity equations and the constitutive equations
of thermal plasticity for repeated elastic-plastic strains of isotropic materials along small-curvature trajectories, the
strength and low-cyclic fatigue criteria, numerical methods for solving the boundary heat conductivity problems, as well

as special software.
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STATEMENT OF THE PROBLEM

The creation of methods for predicting the op-
erational and emergency states of launch equip-
ment under restarts includes the development of
calculation methods and approaches for deter-
mining the temperature and stress strain state
(SSS) of critical structural elements of equipment
under restarts and for estimating their residual
service life. It is assumed that for estimating the
residual service life of the structure it is necessary
to do this for its elements undergoing the heaviest
thermal and power loads under restarts. It is nec-
essary to determine the temperature distribution
in the elements and proceeding from the constitu-
tive equations describing the repeated thermo-
plastic strains of material of these elements to for-
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mulate respective boundary problems, to create or
to improve known methods and software, to cal-
culate SSS, to estimate strength of elements, and
to prove the reliability of results.

In [1—7], the methods for solving the thermal
plasticity boundary problems of the rotation shells
and bodies strained beyond the elasticity limits
using numerical integration, methods of finite dif-
ferences and finite elements and software [8—10],
which enable determining the temperature field
and elastic-plastic SSS for the rotation bodies and
shells according to various theories of plasticity.
However, they are not suitable for estimating the
strength of specific elements of launch equipment,
since the existing versions of software are not de-
signed for numerical study of intensive thermal
and power loads acing on these elements under
short-term combined effect of thermal radiation,
convective heat transfer, and heat flux during the
first rocket launch and restarts. In addition, some
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critical elements of launch equipment have a
plate-like shape. So, to calculate the SSS of ele-
ments, it is necessary to have methods that take
into account the specific physical, mechanical,
and geometrical factors. In this regard, for the
purpose of this research, available techniques for
solving thermal plasticity problems of rotation
bodies and shells and related software have been
improved in terms of their application to the cal-
culation of launch equipment elements. To calcu-
late the plate-like elements, the ANSYS licensed
software package [11] granted by Pivdenne design
office as part of the agreement on research and
technical cooperation has been used.

The subject of this research is a launch pad
whose dimensions, material properties, and con-
ditions of thermal and power impact on its indi-
vidual elements are provided by Pivdenne
Design Office. For each of the pad critical ele-
ments, it is necessary to formulate the respec-
tive thermal plasticity problem and, having
solved it, to conclude on the strength of this el-
ement under restarts.

GENERAL STATEMENT OF THE PROBLEM
OF BODY’S SSS UNDER HEATING AND LOADING

In general, any structural element is a solid de-
formable body having a certain volume and lim-
ited by given surface, which at the initial time t0
has a natural stress-free state, at the initial tem-
perature TO. Then, the body is subjected to heat-
ing and loading by the external volume forces
acting on each elementary volume and by the sur-
face forces acting on the part of body surface. The
other parts of the body can be fixed.

The following assumptions are used:

1) The body is heated and loaded so slowly
that the loading can be seen as a set of equilibrium
states, with the body deformation not entailing
any change in its temperature; hence, the loading
is deemed a quasi-static process;

2) The action of external loads and uneven
heating causes small deformations of the ele-
ments; the element material before the loading
is isotropic; it is deformed both within and be-

yond the elasticity limits, with the creep strain
being negligible as compared with the elastic
and plastic components.

3) In the area of inelastic strain, relief is possible
with appearance of secondary plastic strains, with
the material having the ideal Bauschinger effect.

To solve the problem of SSS under heating and
loading, it is necessary to choose a coordinate
system depending on the body shape, as well as to
set its geometrical parameters, thermal and me-
chanical properties of the material and conditions
of heat exchange with the environment. Heating
and loading should be divided into several stages,
so that the time intervals separating the stages
coincide with the time of transition from the ac-
tive stress to the relief and vice versa. At the end
of any stage of load, on the basis of given informa-
tion it is necessary to determine the temperature
distribution in the body, three components of the
displacement vector at every point, six compo-
nents of the strain tensor, and six components of
the stress tensor, i.e. 16 unknown functions to-
tally. To determine the temperature, the heat con-
duction problem should be solved for given initial
and boundary conditions.

Having determined the temperature distribu-
tion in the body at an arbitrary time and set the
appropriate loads and grip conditions, one can
find the components of displacement vector, as
well as of strain and stress tensors, which meet
static, geometric, and constitutive equations
and specified boundary conditions. The static
equations are three equilibrium state differen-
tial equations [2, 5]; the geometric equations are
six Cauchy relations between the components of
the strain tensor and the displacement vector |2,
5]; and six constitutive equations form connec-
tion between the components of the stress o, (i,
j=1,2,3) and the strain g, (i,j = 1, 2, 3). tensors.
The constitutive equations are the relations of
the strain theory for trajectories of small curva-
ture linearized by the method of additional
stresses [1—5].

The estimation of thermoplastic SSS of the
structural element is solved by iteration approx-

18 ISSN 2409-9066. Sci. innov. 2015, 11(5)



Prediction of Operational and Emergency States of Rocket Equipment Critical Systems Under Repeated Thermal and Power Load

imations followed by estimating its strength. If
after the first load, SSS of structural element
does not reach the fracture level, it is necessary
to calculate (for example, on the basis of varying
hysteresis loop of plastic strain or amplitude of
strain) how many repeated loads this element
can endure.

JUSTIFICATION OF STUDYING THE THERMAL
ELASTIC AND PLASTIC STATES OF PLATE STRUCTURES
USING SOLUTIONS FOR AXISYMMETRIC BODIES

Usually, the launch equipment has a sophisti-
cated geometry and structure. This fact compli-
cates their numerical study. However, in some
cases, the SSS of structural elements can be esti-
mated using the results obtained for the bodies of
simpler geometry, for example, the problem of un-
even heating in the case of the thin-walled cylin-
der and the long box-type structure both made of
the same material. The width of the box wall is
assumed to be equal to the external diameter of
the cylinder, with the thickness of their walls be-
ing identical (Fig. 1). The initial and boundary
conditions on the outer and inner surfaces of both
bodies are considered identical. For the calcula-
tions, the reference point of the coordinate sys-
tem is placed in the center of the box. The prob-
lem of thermoplastic deformation of thin-walled
cylinder is solved using the axisymmetric shell
theory in the formulation [6] and the ANSYS fi-
nite element software system [11] that applies
also to solving the problem of SSS of box-type
structure under planar strain. As a result of calcu-
lations, the temperature distributions over the
thickness of the cylinder and the box-type struc-
ture, which are obtained using different methods
have been found to be identical. Also, it has been
established that in the intersections correspond-
ing to the middle of box walls, there is a good
agreement of the stresses having the same direc-
tion in the box and in the cylinder. This means
that the method for solving the problem thermal
plasticity under repeated loads can be developed
and tested in the axisymmetric formulation and
then be used for the plate structures.
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Fig. 1. Intersection of box-like and cylindrical structures

METHOD FOR STUDYING
TEMPERATURE FIELDS AT RESTARTS

The launch pad is a box-type structure whose
elements are made of isotropic materials. As a re-
sult of restarts, these elements undergo intensive
heating and subsequent cooling, with significant
strains appearing in the material of elements.
These strains causes anisotropy of materials that
initially are isotropic. Therefore, it is expedient
to study the unsteady temperature fields in ani-
sotropic elements.

For determining the temperature field in ani-
sotropic elements the differential equation of
heat conductivity [12] is used:
~divp, p=—igradT, (1)

-
where T is temperature, ¢ is time, P is heat flux
vector, ¢ is specific heat capacity of material, p —
density of material, & = A(%,) is heat conductivity
coefficient.

It is assumed that in the body, there are no heat
sources, and heat emission as a result of deforma-
tions can be neglected.

The differential equation (1) can be integrated
at the initial and at the boundary conditions:

T=T,t=t, (2)
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np=a(T-0)+np. 3)

The last conditjon is set on the surface limiting
the body. Here, n is external normal to the sur-
face limiting the body, a. is heat exchange coeffi-
cient, 0 is temperature of environment, and p is
external heat flux.

The expression (3) is a condition of convective
heat exchange with environment according to the
Newton law, at given external heat flux. In the
general case, the components of heat conductivity
coefficient tensor are temperature functions. The
condition (3) covers three types of boundary con-
ditions of unsteady heat conductivity problem. At
o — oo the condition (3) corresponds to given
temperature on the body surface; at o = 0 it is re-
ferred to given heat flux on the body surface. This
expression can be used in the case of heating the
body according to the Stefan—Boltzmann law, for
the radiant heat exchange between two surfaces.
In the expression (3) o = o, + o, where the first
additive corresponds to the heat exchange accord-
ing to the Newton law, whereas the second one is
related to the heating in accordance with the
Stefan-Boltzmann law.

Despite the fact that the launch pad is a square
box-like structure, when determining the tem-
perature in its elements can be reduced to a non-
axisymmetric heat conduction problem for the
rotation body under heating conditions varying
in the circumferential direction. In this case, the
correlation of boundary points can be found us-
ing conformal transformation of the square to
the circle. Insofar as the initially isotropic mate-
rial, after repeated starts, can become an ortho-
tropic one, the variation heat equation for cylin-
drical rotation body made of orthotropic mate-
rial [12] was used. Solving the 3D heat conduc-
tivity problem directly using 3D finite elements
is time-consuming and inefficient procedure for
the rotation bodies. The use of semi-analytical
finite element method can significantly increase
its effectiveness [2, 4, 5]. This method reduces
the original 3D problem to a series of 2D prob-
lems in the meridian intersection of the body. To

this end, the solution is sought in the form of
trigonometric series in the circumferential direc-
tion. In this case, the 3D heat conduction prob-
lem is reduced to 2D variation problems with
respect to unknown coefficients of the series.
Detailed calculations were made in [5]. Since the
heat conductivity coefficients depend on tem-
perature, the temperature problem is a nonlinear
one. Its linearization is based on the method of
iteration approximations.

As an example, an unsteady temperature field
of long cylinder having an inner radius of 2.94 m
and a thickness of 0.04 m has been studied under
time-variable convective heat exchange with the
environment and heat flux on its inner surface.
The calculations have been made for four options
of boundary conditions of heating: a) by convec-
tive heat transfer and given heat flux; b) only by
given convective heat transfer; ¢) only by heat
transfer according to the Stefan-Boltzmann law;
d) by convective heat transfer according to the
Newton law and heat exchange governed by the
Stefan-Boltzmann law.

The analysis of calculation results has showed
that the maximum temperature on the body sur-
face corresponds to that at which the material
can undergo structural transformations from iso-
tropic to anisotropic one.

To determine the unsteady temperature fields
of thin-walled structural elements in the form of
laminated shells of rotation, a method for solving
the heat conductivity problem at a given heat
flux, under convection and radiation heating or
their combination has been designed (unlike re-
searches [6, 7] which take into account only the
boundary conditions of convective heat exchange
with the environment). The method of finite dif-
ferences and explicit difference scheme in terms
of time have been used. The method has been
showed to be effective and to give a good corre-
spondence between the results of calculations
based thereon and made by ANSYS. It should be
noted that this method can be used to determine
approximate temperature of plate structural ele-
ments for the large-radius cylindrical shells.
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METHOD FOR QUANTIFYING
THERMOELASTIC-PLASTIC STRAIN STRESS
STATE OF STRUCTURAL ELEMENTS
UNDER REPEATED LOAD

Having obtained temperature distribution
within the body simulating an arbitrary struc-
tural element, as a result of solving the heat con-
ductivity problem, it is necessary to find 15 un-
known functions describing SSS of the body at
the end of any stage of load. For this purpose, as
mentioned above, the system of equilibrium sys-
tem equations, geometrical ratios, and constitu-
tive equations should be used. The constitutive
equations should be written using the method of
additional stresses in the theory of strains along
the trajectories of small curvature as the Hook’s
law with additional members [2—5]:

o, =2Ge, +[ (K-2G)e, —Ke, ]85, ~o "

i b

M
(@) _ (p).
o —ZGéAkey ; 4)
K= E=2G{1+v),
1-2v ( )
go=¢.13; & =0, (T -T,). )

Where E, G are elasticity modulus and shear
modulus, respectively, v, o, are Poisson ratio and
linear thermal expansion coeff1c1ent 8, is Kroneck-
er’s delta function; A, is increase in the respective
value for the k-th stage; e(") =g, (¢) are plastic com-
ponents of strain tensor ‘elements, which at the
M-th stage, are equal to the sum of increases in
these components for M stageS'

r; = iAkF;; (6)
(7)

§is intensity of tangential strains, and T is in-
tensity of accumulated plastic shear strain. In (6),
the angle brackets mean average value for the re-
spective stage. In (), the additional stresses
are deemed known and obtained from solving the
problem at the previous stages and approxima-
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tions. Their expressions contain increases in plas-
tic strain components A e ), which should be de-
fined more accurately in the iteration approxima-
tions. The increase Aje,# is calculated assuming
the dependence

s=F(.T) (8)
between the intensity of tangential strains S (7),
intensity of shear strains T’

1
1 2
'=|=ee. | € =€ —€0.

2 iy ij ij ij

and temperature T. For more accurate definition
of dependence (8) o ~ ¢ diagrams (o is stress, € is
elongation of the sample) obtained from experi-
ments on stretching the cylindrical samples at
various fixed values of temperature, which were
made at loading rates not affecting the shape of o
~ ¢. diagrams. Transition from o and ¢ to S and I’
is made according to known formulas [1—5]. For
interim temperature 7, the dependence (8) is
found by linear interpolation. When the second-
ary plastic strains appear, the dependence

s=F(rro.7) (10)

is built using (8), intensity of accumulated plas—
tic shear strains at the moment of upload T'{?, and
respective value of S® =F([,,T) assumlng that
[,=TY++59/2G. For uploading in the area of
secondary plastic strains and for the next (re-
peated) load the dependence

s=F,(r.r®,1) (11)

is built using (8), intensities of accumulated sec-
ondary plastic shear strains T'? and respective
values of §® = F, (T,, T, T). The dependences
(10) and (11) are built using conditions for the
ideal Bauschinger effect [13]

S® 489 =-5® 5@

)

- 25,

where S, S®, S® are intensities of tangential
stresses corresponding to yield limits of material
in (8), (10), and (11). for further changes in the
load direction are built [14].

The constitutive equations (4), the balance equa-
tions, and the Cauchy relations form a system of
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15 equations to be solved under the given bound-
ary conditions. The solution system is formulated
in terms of shifts, stresses or in a mixed form with
respective boundary conditions [2, 5]. In each of
these cases, a nonlinear boundary problem is ob-
tained. Its solution at each stage of load is found
by iteration approximations. At the first phase of
the load, the problem of thermal elasticity is
solved, while at the next stages, one deals with
the problem of thermal plasticity to solve which,
during each approximation, it is necessary to use
the SSS components obtained at the previous
stage and in the previous approximation. This
common approach to determining SSS of the
body simulating a particular structural element is
realized using different coordinate systems, de-
pending on the body shape and methods used for
solving systems of differential equations.

The methods used for massive rotating bodies are
described in detail in [2, 4, 5], while the software
for solving thermal plasticity boundary problems
in variation formulation using the finite element
method is is given in [8, 9]. For the shell struc-
tures of arbitrary shape, an algorithm for solving
this problem in the variation formulation using
the finite difference method is proposed in [1].
For the thin shells, within the Kirchhoff-Love
theory [15], in [1—3, 6] there are detailed de-
scriptions of the methods for solving thermal
plasticity boundary problems using the orthogo-
nalization approach [16] for which the relevant
software has been developed [8, 10 ].

In this research, the above mentioned methods
and the appropriate software have been extended
to the repeated load and to the assessment the
strength of structural elements. When assessing
the strength, it is assumed that for repeated stress
of the body, the maximum temperature and power
factors remain fixed. In this case, the deformation
is characterized by varying width of the plastic
hysteresis loop and by plastic strain accumulated.

In the absence of creep, there are two cases of de-
struction, the quasi-static fracture and the fatigue
distress [17]. The fatigue distress is accompanied
by fatigue cracks and small plastic strains. The
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quasi-static fracture is caused by the accumula-
tion of plastic strains corresponding to single
static load that causes failure of material. This
kind of fracture is typical for the materials that
are cyclically stable and prone to the accumula-
tion of plastic strains. The Sdobyrev criteria [18]
are used for the assessment of quasi-static frac-
ture, whereas to estimate the low-cycle fatigue it
is necessary to apply the Coffin-Manson-type cri-
teria relating the amplitude of total or plastic
strain with the number of cycles before failure.
For example, the SSS of thin cylindrical shell was
considered under the action of axial force, inter-
nal pressure, and temperature, which increase
and, having reached their maximum values, de-
crease to the zero load and the initial tempera-
ture. In the proposed method, SSS of the shell
was determined under three-time repeated load.
The effectiveness of iterations and the accuracy
of results have been confirmed by comparing the
exact solution of this problem with the solution
obtained using the ANSYS complex.

STUDY OF SSS AND ESTIMATION
OF RESIDUAL SERVICE LIFE OF PLATE ELEMENTS
OF LAUNCHING EQUIPMENT UNDER REPEATED
NON-ISOTHERMAL LOAD

Let determine SSS and estimate the residual
service life of plate element having a constant
thickness used for the protection of electronic
equipment during the rocket launch. Let do this
with the help of ANSYS software.

During the rocket launch the plate undergoes
an intense thermal mechanical load. The analysis
of input data has showed that the mechanical
load on the plate can be neglected as compared
with the thermal one. Therefore, hereafter, the re-
search deals with thermoelastic deformation of
the plate under cyclical thermal load.

The geometry of a plate quarter with a grid
consisting of finite number of elements is given in
Fig. 2. At the crossing x = 0 and y = 0 the sym-
metry conditions are set. Beyond the contour, the
plate is deemed thermally insulated. On the inner
surface z = 0, the conditions of convective heat
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exchange with environment having a tempera-
ture of 7, =308 K. are established. Heat exchange
coefficient on this surface is o = 35 W/m? - K.
Initial temperature of the plate is T, = 308 K. The
load cycle consists of heating and cooling proc-
esses. At the first stage, the outer surface z =
= 0.03 m is heating during 13.2 s in accordance
with boundary condition (3), where o = o .
Temperature of external environment, heat ex-
change coefficient, and specific radiant heat flux
vary with time reaching their maximums at
2.8 s <t < 3.2s. Having been heated the plate is
cooling down to the initial temperature T, during
6000 s, with heat exchange conditions on the sur-
face z=0.03 m being identical to those on the sur-
face z = 0. The plate is made of 10XCH/I steel.
This material is deemed to harden linearly with
ideal Bauschinger effect.

The calculations have showed that while heat-
ing and cooling the plate, the temperature T and
stress o, distributions vary insignificantly at the
crossings parallel to Oxy plane. The shear stress-
es can be neglected as compared with the normal
ones, while stresses 6 and o differ slightly
from each other and exceed stress _ by an order
of magnitude. It has been established that being
heated during 2 s the plate warms up a little bit,
whereas at ¢ = 2.8 s significant temperature gra-
dients appear and cause compressive stresses
near the plate surface. As the heating rate de-
creases, temperature is distributed uniformly
across the plate thickness, with the stresses re-
versing their sign due to a plastic deformation in
the area of maximum temperature gradients,
neat the plate surface.

Some results of calculations are showed in
Fig.3. In Figs 3 a and b, one can see temperature
T dependence with time at the point P with co-
ordinates x =y = 0, z = 0.03 m. Fig. 3, a shows
temperature dependence for 5 cycles of heating
and cooling; Fig. 3, b illustrates change in tem-
perature during heating for 1% and 2" cycles.
One can see that after the cooling, temperature
reaches its initial value T, with the heating for
different cycles varying insignificantly. In Fig. 3,

ISSN 2409-9066. Sci. innov. 2015, 11(5)
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Fig. 2. Geometry and finite-element grid of the plate

¢, o, stress distribution is given at the point P,
during the heating for 1*t, 2" and 5 cycles. Figs.
3, b and ¢ show that stresses ¢ _ reach their max-
imums at the moment of maximum warm-up of
the plate. Having compared stresses at the end
of heating of the 1** cycle and at the beginning of
the 2" and 5" cycles, one can see that during the
cooling the stresses do not vary materially. Fig.
3, d features dependence sign(1,(D_))S ~ I at the
point P, for 5 cycles of load (intensity of shear
stresses S multiplied by sign of the 3" stress de-
viator 1,(D_) for determining the sign of load).
As one can see from Fig. 3, d, the hysteresis loop
is stabilized at the 5" load cycle, with the ampli-
tude of total strain being Ae = 2/N3 AT ~ 0.34 %.
The residual life of this structure under repeated
thermal load is estimated using the Coffin-
Manson type fatigue criterion [19]:

ALD“ +G—B],
E

where Ag is amplitude of total strain; N is number
of cycles before failure; D, A, n, m are constants
depending on material properties. The properties
of material in (12) correspond to maximum tem-
perature of the cycle and are taken accordingly to
the lower estimate of yielding steel durability [2].
The number of cycles before failure of the struc-
ture under consideration has been established to
be N > 3000. To estimate the residual service life
of this structure more accurately is impossible
unless reliable data on cyclical plastic deforma-

AeN™

(12)
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Fig. 3. Temperature distribution with time (a, b) and SSS (¢, d) of the plate under repeated heating

tion and thermal fatigue strength of the material
used are available. The detailed calculations are
given in [21].
CONCLUSIONS

1. A mathematical model has been proposed for
studying thermoelastic plastic SSS and strength
of launch pad elements. The model enables esti-
mating the residual service life of the structure.

2. A general statement of the problem has been
formulated. A method for estimating the strength
and residual service life of the structure consist-
ing of many elements of various geometry under
repeated power and thermal loading has been

proposed. The estimate of strength and residual
service life is based on computation of tempera-
ture and SSS of the most stressed members. For
this purpose, the existing methods and software
for computing the temperature fields of thin- and
thick-walled rotation bodies have been improved,
including by solving non-steady heat conductiv-
ity problem with actual modes of heating taken
into account due to formulating respective
boundary conditions.

3. The existing methods and software for solv-
ing the rotation body thermoelasticity problem
have been generalized by developing an effective
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algorithm for specifying correlations between the
second invariants of stress and strain deviators
under variable load with secondary plastic defor-
mations and ideal Bauschinger effect taken into
consideration.

4. The results of the study of launch pad plate
elements have been given as an example of appli-
cation of the method for estimating the strength
and residual service life of the structure. The re-
sults of computation of temperature field and
SSS have showed for after the fifth launch the
SSS components do not change and the structure
endures further launches.

5. The number of launches before failure has
been estimated. This estimate is fair under fixed
thermoelastic load on launching equipment pro-
vided the mechanical properties of material are
stable in the course of operation.

It should be noted that the obtained results are
approximate since the calculations are made on
the basis of input data on material properties tak-
en from available literature, which roughly cor-
respond to the actual properties of material. The
strength of launch pad elements can be accurately
estimated using this method provided the dia-
grams of material cyclic deformations obtained
after each launch of the booster are available.
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METOJUKA ITPOTHO3YBAHHA
EKCIIJIYATAIIIIHOTO I TPAHUYHOTO CTAHY
BIAMOBIJIAJTbHUX CUCTEM PAKETHOT
TEXHIKHM ITPU IIOBTOPHUX TEPMOCUJIOBUX
HABAHTAXEHHX

3aIporOHOBAHO MAaTEMAaTUYHY MOJIEJIb JIJIS JIOCi/IPKEHHS
TEPMOIIPY’KHOIJIACTUYHOTO  HAIPY’KEeHO-/1e(hOPMOBAHOTO
CTaHy Ta MIIHOCTi CCTeM PaKeTHOI TEXHIKHU ITPU MOBTOPHUX
MyCKax, SKa A03BOJISIE OIIHUTH Pecypc KOHCTPYKIIii. Buko-
PUCTAHO PIBHSHHS TETJIONPOBITHOCTI Ta BU3HAYATIBHI PiB-
HSIHHS TEPMOIJIACTUYHOCTI JIJIST TIPOIECiB  TIOBTOPHOTO
MIPY’KHOIJIACTUYHOTO JiehopMyBaHHS i30TPOITHUX MaTepia-
JIiB B3JIOBK TPAEKTOPIiil MasIoi KpUBU3HU, KPUTEPil MIilTHOCTI
Ta MJIOIMKJIOBOI BTOMH, YMCEJbHI METOAM PO3BSI3aHHS
KpalioBUX 3a/1au TETIONPOBIAHOCTI Ta TEPMOTIIIACTUIHOCTI,
a TAaKOXK Bi/IMOBi/IHI KOMIT'IOTEPHI TPOTPaMu.

26

Kniouoei crnoea: MaTeMaTH4HA MOJIENb, €JIEMEHT KOH-
CTPYKILii, IPOIIEC TEPMOTIPY>KHOIIJIACTUYHOTO /1ehOPMYBaH-
Hsl, [IOBTOPHE HABAHTAKEHHS, KPUTEPIiil MIITHOCTI, KpUTePiit
MAJIOIMKJIOBOI BTOMH.

IO.H. Illesuenxo’, H.®@. Andpywxo’, M.E. Babewxo’,
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! Uncruryt mexanuku um. C.I1. Tumorerko
HAH VYxpaunsi, Kues
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METO/INKA [TPOTHO3NPOBAHUA
IKCIVIYATAIIMOHHOT'O 1 ITPEJIEJIBHOTO
COCTOAHNUA OTBETCTBEHHBIX CUCTEM

PAKETHOV TEXHUKM ITPY ITOBTOPHBIX

TEPMOCWJIOBbBIX HATPYKEHUAX

ITpemioxkena MaTeMaTUIeCKast MOZIEb JIJ1sT CCJIEIOBAHUS
TEPMOYIPYTO-TIACTUYECKOTO HATIPSPKEHHO /1e(h)OPMUPOBAHHO-
0 COCTOSIHUSI U1 TIPOYHOCTH CHCTEM PAKETHOH TEXHUKH TIPU TTOB-
TOPHUX TIyCKaX, MO3BOJISIONIAsT OIEHUTh PECYPC KOHCTPYKITUH.
Vcrnionb30Banb! ypaBHEHE TEMTIOMTPOBOIHOCTY 1 ONPEIEIISTIO-
M€ ypaBHEHUS] TEPMOIIJIACTUYHOCTH JIJIsI TIPOIIECCOB TIOBTOP-
HOTO YIPYTO IJIACTUYECKOTO /1e(hOPMUPOBAHUS U30TPOITHBIX
MAaTepUasIoB 110 TPACKTOPUSIM MaJIOi KDUBU3HBI, KDUTEPUH TIPO-
YHOCTH U MAJIOIIIKJIOBOM YCTAJIOCTH, YUCJIEHHBIE METO/IBI Pelire-
HIIST KPaeBbIX 33714 TEMJIONPOBOHOCTU U TEPMOILIACTUYHOCTH
Y COOTBETCTBYIOIINE KOMITBIOTEPHBIE TIPOTPAMMBI.

Knwuesvie cioea: mareMaTHyecKast MOJIEJb, 3JIEMEHT
KOHCTPYKIIMH, TIPOIECC TEPMOYIIPYTO-IIJIACTHYECKOTO Jiedhop-
MUPOBaHM:, IOBTOPHOE HATrPy»KeHNe, KpUTEPUit IPOYHOCTH,
KpUTEPUit MAJOINKIIOBOI yCTATIOCTH.
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