1Telegeev, G, 1Polishchuk, L, 1Lisecka, T, 1Shvachko, L, 1Dybkov, M, 2Stakhovsky, O, 2Vitruk, І, 2Stakhovsky, E
1Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv
2National Cancer Institute, Kyiv
Sci. innov. 2015, 11(2):35-43
https://doi.org/10.15407/scine11.02.035
Section: Research and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
Language: English
Abstract: 

A system for comprehensive non-invasive diagnostic of urogenital system neoplasms has been designed and tested on the basis of molecular genetic parameters (the tmprss2/erg rearrangement using reverse transcriptase polymerase chain reaction (PCR), the level of psa3/psa and cxcr4 gene expression using quantitative PCR, and the gstp1 gene promoter methylation status using methyl-specific PCR.

Keywords: cxcr4 genes, diagnosis, erg, gstp1, malignant neoplasms of genitourinary system, psa, pсa3, tmprss2
References: 

1. Polyschuk L.A., Stakhovskyj A.E., Teleheev H.D., Stakhovskyj E.A. Sovremennye molekuliarno-henetycheskye podkhody k dyahnostyke onko-zabolevanyj mochepolovoj systemy. Urolohiia, 2010, 14, N 3, pp. 68—76 [in Russian].
2. Polyschuk L.A., Teleheeva P.H., Stakhovskyj A.E. y dr. Novye spetsyfychnye molekuliarnye dyahnostycheskye markery pry onkourolohycheskykh zabolevanyiakh. Laboratornaia dyahnostyka, 2010, N 4(54), pp. 46—51 [in Russian].
3. Dubrovska A., Telegeev G. et al. CXCR4 Expression in Prostate Cancer Progenitor Cells. Plos One, 2012, 7(2), e 31226 [in English].
4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinum thiocyanate-phenol-chloroform extraction. Analyt. Biochem, 1987, 162, pp. 156—159 [in English].
https://doi.org/10.1016/0003-2697(87)90021-2
5. Hessels D., Smit F.P., Verhaegh G.W. et al. Detection of TM PRSS2-ERGFusion transcripts and prostate cancer antigen3 in urinary sediments may improve diagnosis of prostate cancer. Clin. Cancer Res, 2007, 13, pp. 17 [in English].
https://doi.org/10.1158/1078-0432.CCR-07-0700
6. Cojoc M., Peitzsch C., Trautmann F. et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets and Therapy, 2013, N 6, pp. 1347—1361 [in English].
7. Bussemakers M.J., van Bokhoven A., Verhaegh G.W. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res, 1999, Dec 1, 59 (23), pp. 5975—79 [in English].
8. Kok J.B.,de, Verhaegh G.W., Roelofs R.W. et al. DD3 (PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res, 2002, 62, pp. 2695—98 [in English].
9. Hessels D., Gunnewiek J.M., van Oort I. et al. DD3 (PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol., 2003, 44(1), pp. 8—15, discussion 15—6 [in English].
https://doi.org/10.1016/S0302-2838(03)00201-X
10. Ploussard G.I., Haese A., van Poppel H. et al. The prostate cancer gene 3 (PCA3) urine test in men with previous negative biopsies: does free-to-total prostate-specific antigen ratio influence the performance of the PCA3 score in predicting positive biopsies? BJU Int., 2010 Oct, 106(8): 1143-7 [in English].
https://doi.org/10.1111/j.1464-410X.2010.09286.x
11. Day J.R., Jost M., Reynolds M.A. et al. PCA3: from basic molecular science to the clinical lab. Cancer Lett., 2011 Feb 1, 301(1): 1—6 [in English].
https://doi.org/10.1016/j.canlet.2010.10.019
12. Clarke R.A., Zhao Z., Guo A.Y. et al. New genomic structure for prostate cancer specific gene PCA3 within BMCC1: implications for prostate cancer detection and progression. PLoS One, 2009, 4(3), e4995. doi: 10.1371/journal.pone.0004995, Epub 2009 Mar 25 [in English].
https://doi.org/10.1371/journal.pone.0004995
13. Auprich M.I., Bjartell A., Chun F.K. et al. Contemporary role of prostate cancer antigen 3 in the management of prostate cancer. Eur. Urol., 2011, 60(5), pp. 1045—54 [in English].
https://doi.org/10.1016/j.eururo.2011.08.003
14. Gyoyao Wu. Glutathione metabolism and its implication for health. J. of Nutrition, 2004, 134(3), pp. 489—492 [in English].
15. Cao D.L, Yao X.D. Advances in biomarkers for early diagnosis of prostate cancer. Chin. J. Cancer, 2010, 29(2), pp. 220—233 [in English].
https://doi.org/10.5732/cjc.009.10274
16. Eaton D.L. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicological sciences, 2007, 49, pp. 156—164 [in English].
https://doi.org/10.1093/toxsci/49.2.156
17. Solonchak A.M., Obolens’ka M.Yu. Struktura i funktsii hlutation-S-transferazy R1. Ukr. bioloh. Zhurnal., 2009, N 1, pp. 5—17 [in Ukrainian].
18. Bernardini S. et al. Hypermethylation of the CpG in the promotor region of the GSTP gene in prostata cancer: a useful diagnostic and prognostic marker. Clin. Chim. Acta., 2004, 350, pp. 1—2 [in English].
https://doi.org/10.1016/j.cccn.2004.07.022
19. Bastian P.J., Ellinger G., Schmidt D. et al. GSTP1 hypermethylation as a molecular marker in the diagnosis of prostate cancer: is there correlation with clinical stage. Eur. J. Med. Res., 2004, N 9(11), pp. 523—527 [in English].
20. Dulaimi E. et al. Promoter Hypermethylation Profile of Kidney Cancer. Clin. Cancer Res., 2004, N 10, pp. 3972—3979 [in English].
https://doi.org/10.1158/1078-0432.CCR-04-0175
21. Battagli C., Uzzo R.G., Dulaimi E. Promoter hyper methylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res., 2003, 63, pp. 8695—8699 [in English].
22. Clark S. et. al. DNA methylation: Bisulphite modification and analysis. Nature Protocols, 2006, N 1, pp. 2353—2364 [in English].
https://doi.org/10.1038/nprot.2006.324